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Introduction

The essence of Galois’ achievements in modern algebra was to associate to
a given polynomial equation f(x) = 0 over a field K a finite group, called
Galois group, and to show that the equation can be solved by radicals if
and only if its Galois group is solvable. In the same spirit, the fundamental
theorem of Galois theory states that the subfields of a finite separable and
normal field extension K ⊂ L are in one-to-one correspondence with the
subgroups of the automorphism group Aut(L/K). This concept of gaining
information about an algebraic system by considering a group that acts on
it, is widely applied in today’s mathematics.

Let X be a set that is endowed with an action of a group G. The action is
called simply transitive if for each pair of elements in X there exists a unique
element in the group G taking the first element to the second. In this case, X
is called a principal homogeneous space under the action of G. Equivalently,
one could also require that the canonical map

α : X ×G −→ X ×X , (x, g) 7→ (x, x · g)

be an isomorphism. This map appears also in the definition of a principal
homogeneous space in algebraic geometry. An action of an affine algebraic
group scheme G on an affine scheme X is called free, if the map α is a closed
embedding [29]. The image of α is the fiber product X×YX, where Y = X/G
is the affine quotient of X by the action of G. A principal homogeneous space
is an affine scheme X with X −→ Y faithfully flat and X × G −→ X ×Y X
an isomorphism [29, 48]. It is also called a torsor in a terminology that goes
back to work of Grothendieck [17] and Demazure-Gabriel [12].

Torsors in algebraic geometry possess naturally a counterpart in the theory
of Hopf algebras. Essentially, commutative Hopf algebras are the function
algebras of affine algebraic groups. Like groups their representations allow
tensor products and duals. This last property holds even for noncommutative
Hopf algebras, the function algebras of quantum groups introduced in 1986
by Drinfeld [14]. Indeed, the main feature of a Hopf algebra is a so-called
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antipode map. It can be interpreted as the noncommutative analogue of a
map which assigns an inverse to each element of a group. This property
of the antipode is part of the well-known connection between Hopf algebras
and algebraic varieties: Each affine scheme X over a field k is given as X =
Spec(A) for a commutative affine k-algebra A, and each affine group scheme
G is given as G = Spec(H) for a commutative k-Hopf algebra H. Thus, an
action X ×G −→ X is uniquely determined by a coaction ρ : A −→ A⊗k H,
and it is free if the map

β : A⊗k A −→ A⊗k H , a⊗ b 7→ (a⊗ 1)ρ(b)

is surjective.

This map β appeared in 1969 in lecture notes by Chase and Sweedler [10].
It was studied there in connection with Galois objects, which are essentially
torsors in the category of commutative algebras. An inspiration for this
was the Chase-Harrison-Rosenberg approach to Galois theory for groups act-
ing on commutative rings [9]. There, the finite group of automorphisms in
the classical theory is replaced by the coaction of a Hopf algebra. In 1981,
Kreimer and Takeuchi [25] gave a definition of Hopf-Galois extension that is
based on bijectivity of the map A⊗B A −→ A⊗k H, where B ⊂ A is the set
of invariants under the coaction of H.

Ever since, Hopf-Galois extensions have been objects of fundamental inter-
est. Apart from being an important tool in the investigation of Hopf algebras
themselves, they are also studied in connection with affineness theorems for
algebraic groups [46], inseparable field extensions [16], representation theory
[47] and duality theorems [4], just to name a few.
The notion of Hopf-Galois extension comprises classical Galois field exten-
sions when H is chosen as the dual of a group algebra. Also, as expected,
the coordinate rings of affine torsors correspond precisely to the faithfully
flat Hopf-Galois extensions with respect to Hopf algebras that are coordinate
rings of affine group schemes. By analogy, noncommutative and noncocom-
mutative Hopf algebras are coordinate rings of quantum groups, and lead to
Hopf-Galois extensions that can be interpreted as noncommutative torsors.

In 1999 Kontsevich [24] suggested to use another definition of a torsor, a
non-empty set X that is endowed with a map λ : X×X×X −→ X satisfying
the same identities as the ternary operation (a, b, c) 7→ ab−1c in groups. This
is equivalent to the definition of a principal homogeneous space given above.
The corresponding axioms are

λ(a, a, b) = b , λ(a, b, b) = a

λ(λ(a, b, c), d, e) = λ(a, b, λ(c, d, e)) = λ(a, λ(d, c, b), e) .
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This approach is based on an old intrinsic reformulation of affine structures
that was originally suggested by Reinhold Baer [1] in 1929 under the name
“Schar”. As a consequence of these axioms, a torsor has always two iso-
morphic groups that act simply transitively on it (one from the left and the
other one from the right). They can both be recovered using a method of
Weinstein [58] which is based on the idea that to any (a, b, c) ∈ X3 there
exits a unique fourth vertex ab−1c ∈ X such that (a, b, c, ab−1c) forms a par-
allelogram. Weinstein’s interest in what he calls affinoid structures lies in
the study of compatible geometric structures on Poisson manifolds.

In an attempt to unify the various notions of torsor that appear in algebraic
geometry and Poisson geometry, Grunspan recently introduced the concept
of quantum torsor in [18]. His definition follows the usual procedure of using
noncommutative algebras and reversing arrows in order to obtain quantized
objects. Consequently, a quantum torsor T is an algebra equipped with an
algebra homomorphism µ : T −→ T ⊗ T op ⊗ T satisfying axioms dual to
those of the map λ above. In dualizing the last equality, however, a difficulty
appears. This lies in the fact that although we have (g−1)−1 = g for each
element of a group, this is no longer true in the quantum group case. So a
quantum torsor has as an additional data an algebra map θ : T −→ T that is
supposed to play the role of a squared inverse.
One of Grunspan’s main results is the noncommutative analogue to what
holds for Kontsevich’s torsors. It says that one can associate to each faithfully
flat quantum torsor T two (non-isomorphic) Hopf algebras, which both coact
on T . Moreover, the coactions are such that, under each of them, T becomes
a Hopf-Galois extension.
This situation can be described with the notion of a Hopf bi-Galois extension
introduced by Schauenburg in [38]. There, it is shown that the structure
maps of each faithfully flat H-Galois extension A determine a coaction of
another Hopf algebra L, such that A becomes also an L-Galois extension. So
classical torsors and Hopf-Galois extensions really show the same behaviour:
Although one starts from just one action of a group resp. one coaction of a
Hopf algebra, there will always be another group resp. another Hopf algebra
acting as a counterpart.
In the noncommutative setting, this is also encoded in the concept of a Hopf-
Galois system due to Bichon [3]. Its data contains all the structure maps
that make A into an L-H-bicomodule algebra. In addition, there occurs one
particular map that satisfies properties similar to those of an antipode.

Each of these approaches to the concept of noncommutative torsor is based
on its own particular features. It is interesting to see, though, that in two
cases there occur maps that generalize either an antipode or its square.
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This thesis is devoted to the study of these generalized antipode maps in the
theory of noncommutative torsors. We are particularly interested in the θ-
map for quantum torsors and the generalized antipode map in a Hopf-Galois
system. The latter reveals a striking connection between the structure of
torsors and Hopf algebras. We use two different reconstruction methods due
to Tannaka-Krein [11] and Takeuchi [51], respectively, to show how torsor
structures appear in “nature”: Quantum torsors can be built up from a pair
of comodule algebras by adjoining generalized antipodes. Moreover, we an-
swer a question of Bichon [3]. Generalized antipodes are uniquely determined
and they are algebra anti-morphisms.
We also study an extended version of quantum torsor that has been sug-
gested by Schauenburg [42]. Such a B-torsor is naturally endowed with the
coaction of a Hopf algebra. But apart from this, we uncover Hopf algebroid
structures. They come together with antipode maps in the sense of Lu [26],
and those again are connected to the above θ-map. We derive Grunspan’s
axioms for the θ-map from the Hopf algebroid axioms. Thus, the θ-map can
be interpreted in terms of Hopf algebroid structures that are encoded in the
torsor structure map.
But what are the advantages of the intrinsic description of principal homo-
geneous spaces? We give an application of noncommutative torsors in the
extension theory of algebras: Extensions of depth two, arising from subfactor
theory [22], can be embedded into the concept of torsor. Here, the intrin-
sic definition proves to be very effective in detecting Hopf-Galois extensions
without even knowing about possible coactions of Hopf algebras. Our ap-
proach allows us to simplify proofs and extend results of [21, 22] about Jones
towers of Frobenius extensions. As a consequence, we arrive at a new gen-
eral definition of noncommutative torsor that comes along with coactions of
×A-Hopf algebras rather than ordinary Hopf algebras.

What follows is a detailed description of the contents in this thesis:

There are three concepts of noncommutative torsor known in the literature:
Hopf-Galois extensions, Hopf-Galois systems and quantum torsors. Each
of them takes a different approach in describing the properties of a non-
commutative principal homogeneous space.
We present their definitions and main results in the first chapter. Hopf-
Galois extensions are the oldest of the three notions, defined in terms of a
Hopf algebra and a comodule algebra by requiring that a certain map be
bijective. This notion goes back to work of Chase and Sweedler in 1969.
The notion of quantum torsor as introduced by Grunspan [18] does not use
a Hopf algebra at all in the definition. The coactions are “hidden” in the
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torsor structure map. The concept of Hopf-Galois system was introduced by
Bichon in [3]. It is the most explicit one, since its data describes both the
torsor structure and the coactions of two Hopf algebras. We discuss several
examples of each of these three structures, and indicate how they are related
to each other and to the notion of Hopf bi-Galois extension [38].

By a classical result of Saavedra Rivano [36], the torsors with respect to a
commutative k-Hopf algebra H correspond to the k-valued fiber functors on
the category of finite dimensional H-comodules. A noncommutative version
of this theorem for Hopf-Galois extensions was proved by Ulbrich [54, 55].
In the second chapter, we indicate how reconstruction techniques due to
Tannaka-Krein can be applied to describe Hopf-Galois extensions as coho-
momorphism objects of two particular fiber functors. We give an example
which shows that even two arbitrary fiber functors lead to Hopf-Galois ex-
tensions.
Quite a few authors have suggested notations that allow to carry out cal-
culations with tensor products. The well-known Sweedler notation [50] is
one of them. Another one, which goes back to Penrose [34], is the graphical
notation. It has the advantage of not using “elements”, and is thus valid in
any monoidal category.
We use this graphical notation to prove that quantum torsors arise naturally
as cohomomorphism objects. We consider two arbitrary functors ω, ν : C
−→ M from a monoidal category C to a small rigid monoidal category M.
Then the cohomomorphism object cohom(ν, ω) from [32] turns out to be a
torsor. The construction of a θ-map for cohom(ν, ω) requires that C be rigid.
It also shows how the θ-map is connected to the antipode of a Hopf algebra
constructed in [56]. In fact, the whole construction method reveals that the
axioms of a Hopf algebra can be naturally interpreted in terms of quantum
torsor structures: If we start with functors ω = ν, then cohom(ω, ω) is a
Hopf algebra.

In the third chapter we consider total Hopf-Galois systems. They were de-
fined by Grunspan [18] as an extended version of Bichon’s Hopf-Galois sys-
tems. Their additional data is a second bicomodule algebra with structure
maps, such that there are two Hopf algebras and two bicomodule algebras
carrying all the data needed to recover two Hopf bi-Galois extensions.
Our approach to the concept of total Hopf-Galois system is different. We
show that the axioms of a Hopf-Galois system are modelled analogously to
those of a Hopf algebra. The latter is a bialgebra which has an antipode
map. So we start from a bicomodule algebra system, and add generalized
antipodes to its set of axioms. We use the crucial observation that gen-
eralized antipodes are units for suitably defined multiplications on certain
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homomorphism sets. Thus, we develop a technique to prove properties for
generalized antipodes, that correspond to those of an ordinary antipode. In
particular, we give a direct proof of the fact that generalized antipodes are
uniquely determined algebra anti-morphisms. This answers questions of Bi-
chon in [3].
We give an explicit example of a total Hopf-Galois system by computing
all the structure maps that arise out of a faithfully flat Hopf-Galois exten-
sion. Our previous results on generalized antipodes allow us to generalize
Takeuchi’s result on free Hopf algebras over bialgebras [51] to the case of total
Hopf-Galois systems. Each bicomodule algebra system possesses a universal
Hopf-Galois system. Hence, it is possible, in a certain sense, to “adjoin”
generalized antipodes to a bicomodule algebra system. The resulting total
Hopf-Galois system is universal with respect to this property.

Above, we have listed axioms for the ternary operation (a, b, c) 7→ ab−1c in
groups. In fact, we can show that the last axiom

λ(a, b, λ(c, d, e)) = λ(a, λ(d, c, b), e) ,

which is responsible for the map θ in the quantized case, can be deduced from
the first three ones. It is interesting to compare this to Schauenburg’s result
in [41]. It says that the structure of a faithfully flat quantum torsor is already
determined by those axioms that do not make use of the θ-map. This allows
to extend the notion of quantum torsor to the case of an arbitrary algebra
extension B ⊂ T , leading to the notion of B-torsor with a torsor structure
map T −→ T ⊗ (T ⊗B T )B.
We start the fourth chapter with a review of ×A-bialgebras introduced by
Takeuchi [52], and their equivalent notion of bialgebroids due to Lu [26].
These objects can be seen as a generalization of ordinary bialgebras and
have recently aroused much interest in the literature [5, 30, 44]. We com-
pare the two different concepts of ×A-Hopf algebra [43] and Hopf algebroid
[26], which both make a different approach in generalizing Hopf algebras.
For further applications we introduce the analogue of a right bialgebroid in
the terminology of ×A-bialgebras, and call it a ×A-bialgebra. Furthermore,
we prove that each ×A-bialgebra that admits a Hopf-Galois extension is a
×A-Hopf algebra.
Then we turn to the study of B-torsors and their associated algebraic struc-
tures. Each B-torsor T is endowed with the coaction of a Hopf algebra H,
that can be recovered by faithfully flat descent [42]. This makes T into an
H-Galois extension of B. We discover that, apart from this, the torsor map
induces Hopf algebroid structures. Each B-torsor T gives rise to a right
TB-bialgebroid structure on the centralizer (T ⊗B T )B. The Galois map
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then induces a bialgebroid structure on the smash product algebra TB#H.
A non-finite version of Lu’s theorem on the construction of Hopf algebroid
structures for smash product algebras [26] implies that TB#H is in fact a
Hopf algebroid. It turns out that the antipode of this Hopf algebroid is closely
connected to an endomorphism of the centralizer TB. This endomorphism is
given by the same formula as the θ-map of a quantum torsor, and it is also
involved in the antipode map Θ : (T ⊗B T )B −→ (T ⊗B T )B for the Hopf
algebroid (T ⊗B T )B.
Now the Hopf algebroid axioms imply certain properties for Θ that generalize
Grunspan’s axioms. We obtain a connection between Θ and the torsor struc-
ture map. Another property joins Θ, the torsor map and the θ-map. This
yields a reasonable interpretation of Grunspan’s axioms. The occurrence
of generalized antipodes resp. their squares can be understood in terms of
“hidden” Hopf algebroid structures.

What is the advantage of describing the properties of principal homogeneous
spaces in terms of torsors structures? At first, it seems like a loss of informa-
tion to hide Hopf algebras and their coactions in torsor structure maps. But
then we can look at it from the opposite direction: Assume that we are given
an algebra extension N ⊂ M . Then it might neither be obvious whether
there exists a Hopf algebra that coacts on M , nor that it makes M into a
Hopf-Galois extension of N . However, if we can find an N -torsor structure
map for M , then our previous results provide a lot of information. They
allow us to construct a Hopf algebra with a coaction on M such that the
latter becomes a Hopf-Galois extension of N .
We show in the fifth chapter how this approach indeed provides new results
for a particular type of algebra extensions. The intrinsic definition of a non-
commutative torsor is connected to a notion of depth two that has its source
in the classification of subfactors [35]. Finite depth is a property of the stan-
dard invariant of the Jones tower for a subfactor N ⊂M [19]. Such a Jones
tower is obtained by iterating the fundamental construction described in [15].
It can be used to investigate inclusions of one finite semisimple algebra in
another. This procedure was applied on Frobenius extensions in [21] to study
Hopf algebra actions on strongly separable extensions.
Our starting-point is a notion of depth two for ring extensions N ⊂ M that
was introduced by Kadison and Szlachányi in [22]. Their definition of a
depth two extension of algebras possesses an equivalent formulation in terms
of a quasibasis. It involves an equality that resembles one of the first two
torsor axioms. We prove that irreducible depth two extensions N ⊂ M
with trivial centralizer R := MN ∼= k can be embedded into the concept of
N -torsor. Then previous results about torsors imply that any depth two ex-
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tension N ⊂M is Hopf-Galois with respect to a coaction of the Hopf algebra
(M ⊗N M)N . For this we only have to require that M be a faithfully flat
N -module.
Such an extension N ⊂ M gives rise to a generalized Jones tower for depth
two Frobenius extensions. The same reasoning as above can be successively
applied to each of its components. Even the assumption on faithful flatness
can be dropped. We obtain that the tower consists entirely of Hopf-Galois
extensions. Our approach extends results and simplifies proofs of [21] and
[22], where just the first three components of the tower were considered under
more restrictive assumptions.
We introduce the concept of A-B-torsor in order to study depth two exten-
sions that are not necessarily irreducible. It is based on an A⊗B-ring with a
torsor structure map T −→ T ⊗A T ⊗B T . One example of such a structure is
given by ×A-Hopf algebras, and another by depth two extensions (which then
become R-N -torsors). We prove that an A-B-torsor T gives rise to a left and
a right bialgebroid. Via faithfully flat descent we can moreover recover the
coactions of both a ×B-Hopf algebra and a ×A-Hopf algebra on T . These are
different from the two bialgebroids we constructed at first. They coact on T
such that it becomes a left and right Hopf-Galois extension in the sense of
a definition given in [39]. For a ×A-Hopf algebra L, this construction gives
back L itself as well as the ×A-Hopf algebra Lopcop.
We eventually apply our general concept of noncommutative torsor to the
Jones tower for a depth two Frobenius extension N ⊂ M . Again, we can
extend the results in [22], where just the first three components were proved
to carry bialgebroid coactions. It turns out that in this particular case the
previously constructed right bialgebroid is equal to the ×R-Hopf algebra that
coacts on T . This yields, as our final result, a Frobenius tower consisting en-
tirely of right ×R-Hopf-Galois extensions.
Hence, we see that the intrinsic reformulation of a Hopf-Galois extension as
a noncommutative torsor can be indeed of practical use. With the method
of faithfully flat descent at hand, it allows to recover principal homogeneous
spaces and coactions of quantum groupoids in cases where such structures
might not be obvious at first.

The appendix contains an exposition on some tools and notions that are used
in the main part of the text, such as faithfully flat descent and reconstruc-
tion theorems for cohomomorphism objects. We give a short introduction to
the theory of braided monoidal categories and inner hom-functors. We also
explain the main features of the graphical notation that is used in the second
and third chapter.
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Chapter 1

Three Concepts of
Noncommutative Torsor

1.1 Preliminaries

In this section we fix some notations concerning Hopf algebras and their
modules and comodules. A detailed discussion of the theory of Hopf algebras
can be found in the literature, see for example [28], [23], [49] and others.

Throughout, k will denote a commutative ring. In some specific cases we will
work over a field, which we then denote by K. Unless otherwise mentioned,
will write M = Mk for the category of k-modules, and ⊗ = ⊗k for the
tensor product over k. If no confusion can arise, we denote for two k-modules
M,N ∈ M by Hom(M,N) = Homk(M,N) the k-module of k-linear maps
M −→ N .

Some of our results are also valid in monoidal categories resp. braided monoi-
dal categories. The basic definitions concerning these are given in the ap-
pendix, where also an introduction to graphical calculus in monoidal cate-
gories can be found.

Let R be a ring. Recall, for instance from [6], that a right R-module M is
called flat over R if, whenever

N ′ N-
f

N ′′-g (1.1)

is an exact sequence of left R-modules, then the sequence

M ⊗R N ′ M ⊗R N-M⊗Rf
M ⊗R N ′′-M⊗Rg (1.2)

is also exact. A right R-module M for which (1.2) is exact if and only if (1.1)
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is exact, is called faithfully flat over R. Another equivalent characterization
of faithful flatness is that M is flat and M ⊗R N = 0 implies N = 0 for each
left R-module N .
Flatness and faithful flatness for left R-modules is defined analogously. If M
is an R-bimodule, then we use the expressions right faithfully flat resp. left
faithfully flat over R to distinguish faithful flatness of M as a right R module
from faithful flatness of M as a left R-module.
It is well-known that projective modules are flat and that free modules are
faithfully flat. More examples of flat and faithfully flat modules can be found
in [6]. Faithfully flat modules have a property that is known as faithfully flat
descent. This mechanism is explained in the appendix.

We will always denote the multiplication and unit map of a k-algebra A by
∇ : A ⊗ A −→ A and η : k −→ A, and the comultiplication and counit of a
k-coalgebra C by ∆ : C −→ C ⊗ C and ε : C −→ k.

By definition, a k-bialgebra H is both an algebra and a coalgebra over k such
that ∆ and ε are algebra morphisms. Equivalently, one could also require ∇
and η to be morphisms of coalgebras. We note that a k-bialgebra H which
is flat as a k-module, is already faithfully flat over k. This follows from the
observation that k is a direct summand of H because of εη = idk, which
holds since ε is an algebra morphism.

Let A be a k-algebra, and M ∈ AM a left A-module. We will usually denote
the left action of A on M by am or a·m, but if necessary, we also use symbols
like a�m or a I m for a ∈ A and m ∈M .

For a k-coalgebra C and a right C-comodule N ∈ MC , we use Sweedler
notation (see [49]) to write the comultiplication of C as ∆(c) = c(1)⊗ c(2) for
c ∈ C, and the coaction δ : N −→ N ⊗ C as δ(n) = n(0) ⊗ n(1) for n ∈ N .
Then the comodule axioms (δ⊗ idC)δ = (idN ⊗∆)δ and (idN ⊗ε)δ = idN can
be expressed as δ(n(0)) ⊗ n(1) = n(0) ⊗ n(1) ⊗ n(2) and n(0)ε(n(1)) = n for all
n ∈ N . For a left C-comodule N ′, the notation is δ(n′) = n′(−1) ⊗ n′(0) for
n′ ∈ N ′.
LetH be a bialgebra over k. A rightH-comodule algebra A is by definition an
algebra in the monoidal categoryMH of right H-comodules. This means that
A is both an algebra and an H-comodule such that the multiplication∇ : A⊗
A −→ A and the unit η : k −→ A are H-colinear maps, where A⊗A becomes
an H-comodule via the codiagonal action δ(a⊗ b) := a(0) ⊗ b(0) ⊗ a(1)b(1) for
a, b ∈ A, and k has the trivial comodule structure induced by the unit of H.
In other words, we then have δ(ab) = (ab)(0) ⊗ (ab)(1) = a(0)b(0) ⊗ a(1)b(1) for
a, b ∈ A, and δ(1) = 1(0) ⊗ 1(1) = 1⊗ 1. Equivalently, one could also require
that the comodule structure map δ : A −→ A⊗H be an algebra morphism.
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For any right H-comodule M we let

M coH := {m ∈M | m(0) ⊗m(1) = m⊗ 1}

be the set of H-coinvariant elements of M . It is easy to see that for an
H-comodule algebra A, the set AcoH is a subalgebra of A. The set of H-
coinvariant elements for a left H-comodule N is defined by

coHN := {n ∈ N | n(−1) ⊗ n(0) = 1⊗ n} .

Now let H be a Hopf algebra. This means by definition that the identity
map idH : H −→ H is convolution invertible in Hom(H,H), i.e. there exists
a k-linear map S : H −→ H, the so-called antipode of H, such that S ∗ idH =
ηε = idH ∗S. The convolution is an associative and unitary (with unit ηε)
multiplication on Hom(H,H), defined by (f ∗ g)(h) := f(h(1))g(h(2)) for
f, g ∈ Hom(H,H) and h ∈ H. Consequently, the antipode S satisfies the
equation

S(h(1))h(2) = ε(h)1 = h(1)S(h(2))

for all h ∈ H. It is a basic result in Hopf algebra theory that the antipode, if
it exists, is an algebra morphism S : H −→ Hopcop, and uniquely determined
by the other structure morphisms of H.
If a bialgebra H possesses an antipode S, then it is also an antipode for the
opposite coopposite bialgebra Hopcop. The opposite bialgebra Hop and the
coopposite bialgebra Hcop become Hopf algebras if and only if the antipode
of H is invertible. Then S−1 is an antipode for both Hop and Hcop.

1.2 Hopf-Galois Extensions

Hopf-Galois extensions were introduced by Chase and Sweedler [10] in the
commutative case and by Kreimer and Takeuchi [25] for the case of finite
dimensional Hopf algebras. Their properties dualize the axioms of a G-
torsor when H is chosen as the coordinate ring of an affine group scheme
G = Spec(H). The same definition is also valid in the noncommutative case
and leads to the first concept of noncommutative torsor:

Definition 1.2.1 Let H be a k-bialgebra.
A right H-comodule algebra A is called a right H-Galois extension of B :=
AcoH , if the Galois map

βr : A⊗B A −→ A⊗H , x⊗ y 7→ xy(0) ⊗ y(1)
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is a bijection.
A left H-comodule algebra A is called a left H-Galois extension of B := coHA,
if the Galois map

βl : A⊗B A −→ H ⊗ A , x⊗ y 7→ x(−1) ⊗ x(0)y

is a bijection.

By [42] and references therein, a k-flat bialgebra that admits a faithfully
flat Hopf-Galois extension is a Hopf algebra. This can be proved by taking
advantage of a connection between the Galois map βr and the map βH in the
following example. It shows that every k-Hopf algebraH can be characterized
as bialgebra H that becomes an H-Galois extension of k in a natural way.

Example 1.2.2 Let H be a k-Hopf algebra with antipode S. Then H is
naturally a right H-comodule algebra.
It is clear that k ⊂ HcoH = {x ∈ H | x(1) ⊗ x(2) = x⊗ 1}. For x ∈ HcoH we
have x = (ε⊗ id)∆(x) = ε(x) ·1 ∈ k, and thus the coinvariants are HcoH = k.
The Galois map is given by

βH : H ⊗H −→ H ⊗H , h⊗ g 7→ hg(1) ⊗ g(2) .

It follows from the antipode axioms that this map is bijective with its inverse
given by βH

−1(h⊗ g) = hS(g(1))⊗ g(2). This implies that H is an H-Galois
extension of k. 2

Let H be a k-bialgebra and A a right H-comodule algebra. Whenever A is
faithfully flat over B, then bijectivity of βr : A⊗B A −→ A⊗H implies that
AcoH ∼= B. This is shown for the special case B = k in [55]. Moreover, we see
that then also H is faithfully flat over k, since A ⊗H ∼= A ⊗ A is faithfully
flat over A.

Definition 1.2.3 Let H be a k-flat bialgebra, and A a right H-Galois ex-
tension of k. If A is moreover a faithfully flat k-module, we will call it an
H-Galois object.

Example 1.2.4 The notion of Hopf-Galois extension generalizes the classi-
cal notion of a Galois extension of fields, see also [28]:
Let K ⊂ F be a field extension and let G be a finite group that acts on F
via a group homomorphism ρ : G −→ Aut(F ) with ρ(g)(x) := g · x for all
g ∈ G and x ∈ F . Let H := K[G]∗ be the dual of the group ring K[G]
with the canonical K-basis (eg)g∈G. The the action of G determines an H-
comodule structure on F by δ(x) =

∑
g∈G g · x ⊗ eg for all x ∈ F . Let

R := {x ∈ F | g · x = x ∀ g ∈ G}.
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Assume that F is an H-Galois extension of R, that is, the Galois map β :
F ⊗R F −→ F ⊗H , x⊗ y 7→

∑
g∈G x(g · y)⊗ eg is an R-linear isomorphism.

We have Im(ρ) = Aut(F/R) by definition of R, and the induced map ρ̃ : G
−→ Aut(F/R) is surjective. But we really have |G| = |Aut(F/R)|, since the
assumption |Aut(F/R)| = [F : R] =: m 6= n := |G| implies dimR(A⊗RA) =
m2 6= nm = dimR(A ⊗ H) in contradiction to β being bijective. Hence, it
follows that R ⊂ F is a Galois field extension with Galois group G.

Conversely, assume that R ⊂ F is a Galois field extension. Then we have
[F : R] = |G| and the Galois map is given by β : F ⊗RF −→ F ⊗H , x⊗y 7→∑

g∈G x(g · y) ⊗ eg. If
∑

i xi ⊗ yi ∈ Ke(β), then
∑

i xi(g · yi) = 0 for all
g ∈ G. Now Dedekind’s lemma on independence of characters implies that
the matrix (g · yi)i,g is invertible. This means that xi = 0 for all i and so β
is injective. Since F ⊗R F and F ⊗ H have the same dimension over R, it
follows that β is bijective. Therefore, F is an H-Galois extension of R. 2

Let A be a right H-Galois extension of B. For calculations with the inverse
of βr, we use the notation

βr
−1(1⊗ h) := h[1] ⊗ h[2] ∈ A⊗B A .

Then we have by definition

h[1]h[2]
(0) ⊗ h[2]

(1) = 1⊗ h (1.3)

for all h ∈ H, and the following formulas hold for g, h ∈ H, a ∈ A and b ∈ B
by [47]:

h[1] ⊗B h[2]
(0) ⊗ h[2]

(1) = h(1)
[1] ⊗B h(1)

[2] ⊗ h(2) (1.4)

h[1]
(0) ⊗B h[2] ⊗ h[1]

(1) = h(2)
[1] ⊗B h(2)

[2] ⊗ S(h(1)) (1.5)

h[1]h[2] = ε(h)1A (1.6)

(gh)[1] ⊗B (gh)[2] = h[1]g[1] ⊗B g[2]h[2] (1.7)

bh[1] ⊗B h[2] = h[1] ⊗B h[2]b (1.8)

h[1] ⊗B 1⊗B h[2] = h(1)
[1] ⊗B h(1)

[2]h(2)
[1] ⊗B h(2)

[2] (1.9)

a(0)a(1)
[1] ⊗B a(1)

[2] = 1⊗B a (1.10)

We note for further applications that in case the antipode S of H is invertible,
also the equality

S−1(a(1))
[1] ⊗ S−1(a(1))

[2]a(0) = a⊗ 1 (1.11)
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holds in A ⊗B A, as can be seen by applying the isomorphism βr to both
sides, and using (1.4):

βr(S
−1(a(1))

[1] ⊗ S−1(a(1))
[2]a(0)) =

= S−1(a(2))
[1]S−1(a(2))

[2]
(0)
a(0) ⊗ S−1(a(2))

[2]
(1)
a(1) =

= S−1(a(2))(1)
[1]
S−1(a(2))(1)

[2]
a(0) ⊗ S−1(a(2))(2)a(1) =

= S−1(a(3))
[1]S−1(a(3))

[2]a(0) ⊗ S−1(a(2))a(1) =

= a⊗ 1 = βr(a⊗ 1) .

The following definition is taken from [38]:

Definition 1.2.5 Let L and H be Hopf algebras. An algebra A is called an
L-H-bi-Galois extension of k, if A is both a left L-Galois extension of k and
a right H-Galois extension of k such that the two comodule structures make
it an L-H-bicomodule.

The following result of [38] says that each right H-Galois object A is in fact
a Hopf-bi-Galois extension:

Theorem 1.2.6 ([38]) Let H be a Hopf algebra and let A be a faithfully flat
H-Galois extension of k. Then L := L(A,H) := (A ⊗ A)coH , where the H-
comodule structure on A⊗A is the codiagonal one, is a subalgebra of A⊗Aop
and has the structure of a Hopf algebra with the comultiplication, counit and
antipode given by

∆(
∑

xi ⊗ yi) =
∑

xi(0) ⊗ xi(1)
[1] ⊗ xi(1)

[2] ⊗ yi

ε(
∑

xi ⊗ yi) =
∑

xiyi ∈ AcoH = k

S(
∑

xi ⊗ yi) =
∑

yi(0) ⊗ yi(1)
[1]xiyi(1)

[2] .

A becomes a left L-Galois extension of k under the left L-coaction

δL,A : A −→ L⊗ A , a 7→ a(0) ⊗ a(1)
[1] ⊗ a(1)

[2] ,

such that A is an L-H-bi-Galois extension of k.
Moreover, L(A,H) satisfies the following universal property: For any bialge-
bra B and left B-comodule structure δB,A on A that makes A a B-H-bi-Galois
extension, there is a unique isomorphism of bialgebras ϕ : L −→ B such that
δB,A = (ϕ⊗ A)δL,A.
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If H is cocommutative and A is a faithfully flat right H-Galois extension
of k, then L(A,H) ∼= H by [38]. Starting from a left L-Galois object A, it
is possible to construct a Hopf algebra R := R(A,L) such that A becomes
an L-R-bi-Galois extension of k. Applying the construction L(A,−) again
yields L(A,R(A,L)) ∼= L.

Hopf-Galois extensions have an interesting connection to the braided monoi-
dal category of Yetter-Drinfeld modules introduced in [60].

We recall from [60] or [28] that a right-right Yetter-Drinfeld module M ∈
YDHH over a Hopf algebra H is a right H-module and right H-comodule
satisfying the compatibility condition

m(0) � h(1) ⊗m(1)h(2) = (m� h(2))(0) ⊗ h(1)(m� h(2))(1) (1.12)

for all m ∈ M , where � denotes the right H-module structure of M . Mor-
phisms in YDHH are the H-linear and H-colinear maps.
The category YDHH is monoidal with the tensor product of the underlying
category M, and prebraided by

σ : M ⊗N −→ N ⊗M , m⊗ n 7→ n(0) ⊗m� n(1) . (1.13)

This morphism is invertible if the antipode of H is bijective, and in this case
the inverse is given by

σ−1(n⊗m) = m� S−1
H (n(1))⊗ n(0)

for m ∈M , n ∈ N , and so the category YDHH is braided.

One can also define the category HYDH of left-right Yetter-Drinfeld modules
over H. Its objects are left H-modules and right H-comodules M satisfying
the condition

h(1) �m(0) ⊗ h(2)m(1) = (h(2) �m)(0) ⊗ (h(2) �m)(1)h(1) (1.14)

for all m ∈M and h ∈ H, which can easily be shown to be equivalent to

h(2) �m(0) ⊗ h(3)m(1)S
−1(h(1)) = (h�m)(0) ⊗ (h�m)(1) . (1.15)

Left-right Yetter-Drinfeld modules can be interpreted as right-right Yetter-
Drinfeld modules over the opposite Hopf algebra Hop.

Let H be a Hopf algebra with bijective antipode and A a right H-Galois
extension of B. We denote by

AB = {a ∈ A | ab = ba ∀ b ∈ B}
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the centralizer of B in A, which is clearly a subalgebra of A. The Miyashita-
Ulbrich action of H on AB is defined by

a� h := h[1]ah[2] (1.16)

for a ∈ AB and h ∈ H, and makes AB into a right H-module.

It was shown in [13] that the right Miyashita-Ulbrich action and the restricted
right coaction of A make AB into a Yetter-Drinfeld module. Moreover, AB

is a commutative algebra in the category YDHH with respect to the braiding
(1.13).

1.3 Hopf-Galois Systems

We have seen in the previous section that a k-faithfully flat right H-Galois
extension A of k always comes together with another Hopf algebra L that
makes it into a left L-Galois extension of k. This behaviour is naturally de-
scribed in the following notion of a Hopf-Galois system introduced by Bichon
in [3]:

Definition 1.3.1 A Hopf-Galois system consists of four non-zero algebras
(L,H, T, Z) such that

• L and H are bialgebras

• T is an L-H-bicomodule algebra

• There are algebra morphisms ρL : L −→ T ⊗ Z and ρH : H −→ Z ⊗ T
such that the following diagrams commute:

T L⊗ T-δL,T

T ⊗H
?

δT,H

T ⊗ Z ⊗ T-
id⊗ρH

?

ρL⊗id

L L⊗ L-∆L

T ⊗ Z
?

ρL

L⊗ T ⊗ Z-
δL,T⊗id

?

id⊗ρL

H H ⊗H-∆H

Z ⊗ T
?

ρH

Z ⊗ T ⊗H-
id⊗δT,H

?

ρH⊗id
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• There is a linear map S : Z −→ T such that the following diagrams
commute:

L I-
εL

T-
ηT

T ⊗ Z
?

ρL

T ⊗ T-
id⊗SZ

6

∇T

H I-
εH

T-
ηT

Z ⊗ T
?

ρH

T ⊗ T-
SZ⊗id

6

∇T

It turns out that a Hopf-Galois system contains exactly the data needed in
order to obtain a Bi-Galois extension:

Theorem 1.3.2 ([3]) Let (L,H, T, Z) be a Hopf-Galois system. Then T is
an L-H-bi-Galois extension. The inverse for the Galois map β : T ⊗ T
−→ T ⊗H is given by

β−1 : T ⊗H −→ T ⊗ T , β−1 := (∇T ⊗ idT )(idT ⊗S ⊗ idT )(idT ⊗ρH) .

We note that the above definition of a Hopf-Galois system can be stated
in any braided monoidal category. In particular no assumptions on faithful
flatness have to be made in order to prove Theorem 1.3.2.

Bichon [3] showed that one can also go in the opposite direction by using
reconstruction methods due to Tannaka-Krein: Given an H-Galois extension
A over a field K, one can recover a Hopf-Galois system from it.

The existence and properties of the algebra Z in a Hopf-Galois system can
be understood as follows:
It is shown in [38] that all faithfully flat Hopf algebras form a categoryH with
morphisms the isomorphism classes of faithfully flat bi-Galois extensions of
k. More precisely, the morphism set MorH(L,R) of two Hopf algebras L and
R consists of the isomorphism classes of all L-R-bi-Galois extensions. Let L,
H and R be faithfully flat Hopf algebras and A a faithfully flat L-H-bi-Galois
extension of k and B a faithfully flat H-R-bi-Galois extension of k. Then the
composition of morphisms in H is given by the cotensor product A ⊗H B,
that is the equalizer

A2HB A⊗B- A⊗H ⊗B ,-
δA,H⊗B

-A⊗δH,B

and A⊗HB is shown to be a faithfully flat L-R-bi-Galois extension of k. The
inverse for A with respect to this composition is given by A−1 := (H⊗A)coH ,
which is a left H-subcomodule-algebra of H ⊗Aop and a faithfully flat H-L-
Bi-Galois extension of k. If the antipode of H is bijective, it turns out that
A−1 ∼= Aop. The algebra Z in a Hopf-Galois system (L,H, T, Z) plays the
role of T−1.
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1.4 Quantum Torsors

We now arrive at the definition of our main subject of investigation, namely
quantum torsors.
Let X be a principal homogeneous space under the action of a group G. By
Kontsevich’s definition in [24] it is possible to encode the action of G on X in
a map X×X×X −→ X which satisfies certain “parallelogram” axioms. The
group G can then be reconstructed from this structure map. In the noncom-
mutative setting, we have seen above that both definitions of Hopf-Galois
extension and Hopf-Galois system made use of the coaction of one resp. two
bialgebras. The concept of quantum torsor presents a way, dual to Kont-
sevich’s approach, to formulate these properties in just one structure map.
This map has the advantage of “hiding” the coactions of both Hopf algebras.
Consequently, it allows to write down the properties of a Hopf-Galois exten-
sion without having to know about the coaction of a Hopf algebra. This was
worked out by Grunspan in [18]:

Definition 1.4.1 A quantum torsor over k is a k-algebra (T,∇, η) together
with algebra morphisms

µ : T −→ T ⊗ T op ⊗ T and θ : T −→ T

that satisfy the axioms

1) (∇⊗ id)µ = η ⊗ id

2) (id⊗∇)µ = id⊗η

3) (id⊗ id⊗µ)µ = (µ⊗ id⊗ id)µ

4) (id⊗ id⊗θ ⊗ id⊗ id)(µ⊗ id⊗ id)µ = (id⊗µop ⊗ id)µ

5) (θ ⊗ θ ⊗ θ)µ = µ ◦ θ ,

where µop := τ13 ◦ µ is defined as the composition of µ with the twist σ13 :
T ⊗ T ⊗ T −→ T ⊗ T ⊗ T , x⊗ y⊗ z 7→ z ⊗ y⊗ x that interchanges the first
and the third tensorand.

The torsor T is called commutative, if its underlying algebra structure is
commutative. If µ = µop, then the torsor is said to be endowed with a
commutative law.
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Clearly, the notion of quantum torsor could also be defined in any braided
monoidal category. In Mk, we use generalized Sweedler notation to write

µ(t) := t(1) ⊗ t(2) ⊗ t(3) ∈ T ⊗ T op ⊗ T

for each t ∈ T . Since µ is required to be an algebra morphism, we have for
t, s ∈ T

µ(ts) = (ts)(1) ⊗ (ts)(2) ⊗ (ts)(3) = t(1)s(1) ⊗ s(2)t(2) ⊗ t(3)s(3) .

Furthermore, we have µop(t) = t(3)⊗t(2)⊗t(1) for all t ∈ T , and so the axioms
of a quantum torsor read as

t(1)t(2) ⊗ t(3) = 1⊗ t
t(1) ⊗ t(2)t(3) = t⊗ 1

t(1) ⊗ t(2) ⊗ t(3)(1) ⊗ t(3)(2) ⊗ t(3)(3) = t(1)(1) ⊗ t(1)(2) ⊗ t(1)(3) ⊗ t(2) ⊗ t(3)

t(1)(1) ⊗ t(1)(2) ⊗ θ(t(1)(3))⊗ t(2) ⊗ t(3) = t(1) ⊗ t(2)(3) ⊗ t(2)(2) ⊗ t(2)(1) ⊗ t(3)

θ(t(1))⊗ θ(t(2))⊗ θ(t(3)) = θ(t)(1) ⊗ θ(t)(2) ⊗ θ(t)(3) .

Axiom 3) is a “coassociativity” condition on µ, and hence it is well-defined
to introduce the notation

t(1) ⊗ t(2) ⊗ t(3) ⊗ t(4) ⊗ t(5) := t(1)(1) ⊗ t(1)(2) ⊗ t(1)(3) ⊗ t(2) ⊗ t(3)

= t(1) ⊗ t(2) ⊗ t(3)(1) ⊗ t(3)(2) ⊗ t(3)(3) .

It is shown in [18] that the map θ is fully determined by µ and the algebra
structure of T , and given by the formula

θ(t) = t(1)t(2)(3)t(2)(2)t(2)(1)t(3) = t(1)t(4)t(3)t(2)t(5) (1.17)

for all t ∈ T .

Example 1.4.2 ([18]) Let H be a Hopf algebra with antipode S. Then the
algebra morphisms

µH : H −→ H ⊗Hop ⊗H , h 7→ h(1) ⊗ S(h(2))⊗ h(3)

and
θH : H −→ H , h 7→ S2(h)

make H into a quantum torsor.
By the antipode axioms we have h(1)S(h(2)) ⊗ h(3) = 1 ⊗ h and h(1) ⊗
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S(h(2))h(3) = h ⊗ 1, which yields axioms 1) and 2). It is obvious that µH
satisfies the coassociativity axiom 3). For the properties of θH , we get

h(1) ⊗ h(2) ⊗ S2(h(3))⊗ h(4) ⊗ h(5)

= h(1) ⊗ S(h(2))⊗ S2(h(3))⊗ S(h(4))⊗ h(5)

= h(1) ⊗ S(h(2))(3) ⊗ S(S(h(2))(2))⊗ S(h(2))(1) ⊗ h(3)

= h(1) ⊗ h(2)(3) ⊗ h(2)(2) ⊗ h(2)(1) ⊗ h(3)

and

S2(h(1))⊗ S2(S(h(2)))⊗ S2(h(3)) = S2(h)(1) ⊗ S(S2(h)(2))⊗ S2(h)(3) ,

showing 4) and 5). Grunspan calls this example the trivial torsor of a Hopf
algebra. 2

Remark 1.4.3 Given a quantum torsor T with structure maps µ and θ,
the opposite algebra T op becomes again a quantum torsor with the structure
maps

µT op := µop : T op ⊗ T ⊗ T op , t 7→ t(3) ⊗ t(2) ⊗ t(1)

and
θT op : T op −→ T op , t 7→ θ(t) .

From the axioms of a quantum torsor it is quite obvious what morphisms of
quantum torsors should be:

Definition 1.4.4 ([18]) Let T and R be two quantum torsors. An algebra
morphism f : T −→ R is called a morphism of quantum torsors if it satisfies
the equations

µR ◦ f = (f ⊗ f ⊗ f)µT (1.18)

θR ◦ f = f ◦ θT . (1.19)

According to this definition, the map θ from Definition 1.4.1 can be consid-
ered as a morphism of quantum torsors θ : T −→ T .

The main result of [18] can be summarized as follows:

Theorem 1.4.5 ([18]) Let T be a quantum torsor with the structure maps
µ and θ. Assume that T is a faithfully flat k-module. Then

Hr(T ) := {
∑

xi ⊗ yi ∈ T op ⊗ T |∑
xi ⊗ θ(yi(1))⊗ yi(2) ⊗ yi(3) =

∑
xi

(3) ⊗ xi(2) ⊗ xi(1) ⊗ yi}
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is a subalgebra of T op ⊗ T and becomes a Hopf algebra with the coalgebra
structure maps

∆ : Hr(T ) −→ Hr(T )⊗Hr(T ) ,
∑

xi ⊗ yi 7→
∑

xi ⊗ yi(1) ⊗ yi(2) ⊗ yi(3)

ε : Hr(T ) −→ k ,
∑

xi ⊗ yi 7→
∑

xiyi

and the antipode

S : Hr(T ) −→ Hr(T ) ,
∑

xi ⊗ yi 7→
∑

θ(yi)⊗ xi .

Symmetrically, also

Hl(T ) := {
∑

xi ⊗ yi ∈ T ⊗ T op |∑
xi

(1) ⊗ xi(2) ⊗ θ(xi(3))⊗ yi =
∑

xi ⊗ yi(3) ⊗ yi(2) ⊗ yi(1)}

becomes a Hopf algebra, and both these Hopf algebras coact on T such that T
is an (Hl(T ), Hr(T ))-bicomodule algebra.
Moreover, T is a left Hl(T )-Galois extension of k and a right Hr(T )-Galois
extension of k, which makes T an (Hl(T ), Hr(T ))-bi-Galois extension.

Hence, each faithfully flat quantum torsor is in fact a Hopf-Galois extension,
and the Hopf algebras coacting on the left resp. right are uniquely determined
by the torsor structure map. The converse is also true, as Schauenburg has
shown in [40]:

Theorem 1.4.6 Let H be a k-faithfully flat Hopf algebra with antipode S,
and let T be an H-Galois object. Then T is a quantum torsor with the
structure maps given by

µ(x) = x(0) ⊗ x(1)
[1] ⊗ x(1)

[2] (1.20)

θ(x) = S(x(1))
[1]x(0)S(x(1))

[2] . (1.21)

If the antipode of H is invertible, then also θ is invertible with the inverse
given by

θ−1(x) = S−2(x(1))
[1]x(0)S

−2(x(1))
[2] . (1.22)

This theorem allows us now to construct torsor structure maps for Hopf-
Galois extensions. We show explicitly in the following example how one
object can carry two different quantum torsor structures. They arise from
coactions of two different Hopf algebras.
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Example 1.4.7 We consider the field extension Q ⊂ Q( 4
√

2), that was
also studied in [16]: Although it is not classically Galois (this is because
|Aut(Q( 4

√
2)/Q)| = 2, but [Q( 4

√
2) : Q] = 4), it is a Hopf-Galois extension of

Q for two different Hopf algebras. Let ω := 4
√

2.

We consider H := Q[c, s]/(c2 + s2 − 1, cs), the so-called circle Hopf algebra,
with the coalgebra structure given by ∆(c) = c⊗c−s⊗s, ∆(s) = c⊗s+s⊗c,
ε(c) = 1, ε(s) = 0, and antipode S(c) = c, S(s) = −s. This Hopf algebra
acts on Q(ω) by the following table that can be found in [28]:

· 1 ω ω2 ω3

c 1 0 −ω2 0
s 0 −ω 0 ω3

The action of H is such that Q(ω) becomes an H∗-Galois extension of Q.
As was shown in [16], there exists also an action of the Hopf algebra K :=
Q[a, b]/(b2 − 2a2 + 2, ab) on Q(ω) such that Q(ω) becomes an K∗-Galois
extension of Q. The structure maps of K are ∆(a) = a⊗ a− 1

2
b⊗ b, ∆(b) =

a ⊗ b + b ⊗ a, ε(a) = 1, ε(b) = 0, S(a) = a and S(b) = b, and its action on
Q(ω) is given by

· 1 ω ω2 ω3

a 1 0 −ω2 0
b 0 ω3 0 −2ω

The Hopf algebras H and K are not isomorphic and lead to two different
Hopf-Galois extensions Q(ω) over Q. So the above theorem says that we
should get two different quantum torsor structures on Q(ω). In fact, we
obtain by a tedious calculation that the H∗-Galois extension induces the
torsor structure

µH(ω) =
1

2
ω ⊗ ω3 ⊗ ω ,

on Q(ω), while the action of K leads to the torsor structure map

µK(ω) =
1

4
(ω ⊗ ω ⊗ ω3 + ω ⊗ ω3 ⊗ ω + ω3 ⊗ ω ⊗ ω)− 1

8
ω3 ⊗ ω3 ⊗ ω3 .

We note that it is sufficient to define the respective maps µ : Q(ω) −→
Q(ω) ⊗ Q(ω) ⊗ Q(ω) on the algebra generator ω, since µ is supposed to be
an algebra morphism. 2

In [41] Schauenburg made the key observation that each algebra T , for which
there exists an algebra morphism µ : T −→ T ⊗T op⊗T satisfying the proper-
ties 1), 2) and 3) from Definition 1.4.1, gives rise to a descent data on T ⊗T .
Then he proved the following result using faithfully flat descent.
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For the sake of simplicity, we abuse notation below, and denote elements in
the subset of a tensor product as if they were decomposable tensors.

Theorem 1.4.8 ([41]) Let T be a k-faithfully flat algebra with an algebra
morphism µ : T −→ T ⊗T op⊗T , µ(t) := t(1)⊗ t(2)⊗ t(3), such that 1), 2) and
3) in Definition 1.4.1 hold. Then

H := {x⊗ y ∈ T ⊗ T | xy(1) ⊗ y(2) ⊗ y(3) = 1⊗ x⊗ y}

is a Hopf algebra. The algebra structure is that of a subalgebra of T op ⊗ T ,
and the comultiplication and counit are given by

∆(x⊗ y) = x⊗ y(1) ⊗ y(2) ⊗ y(3)

ε(x⊗ y) = xy .

The algebra T is a right H-Galois object under the coaction

δ(x) = x(1) ⊗ x(2) ⊗ x(3) ⊂ T ⊗H .

This yields together with Theorem 1.4.6, that the existence of µ as in Defini-
tion 1.4.1 already implies that the map θ given by (1.17) satisfies the axioms
4) and 5). Hence, for faithfully flat torsors, the existence of the map θ can
be dropped from the set of torsor axioms.

As proposed in [41], we are going to call the algebra endomorphism θ : T
−→ T from Definition 1.4.1 the Grunspan map of the quantum torsor T .

At this point we can observe a similarity between quantum torsors and com-
mutative torsors. We recall that by a definition of Kontsevich’s in [24], a
torsor is a non-empty set X that is endowed with a map λ : X × X × X
−→ X satisfying the identities

1) λ(a, a, b) = b

2) λ(a, b, b) = a

3) λ(λ(a, b, c), d, e) = λ(a, b, λ(c, d, e))

4) λ(a, b, λ(c, d, e)) = λ(a, λ(d, c, b), e)

for all a, b, c, d, e ∈ X. These are the properties of the ternary operation
(a, b, c) 7→ ab−1c in groups [1, 8]. The axioms of a quantum torsor are such
that they dualize these identities. The Grunspan map θ is actually needed
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for stating a noncommutative analogue to equality 4). But we can prove that
this equality can already be derived from the first three axioms as follows:

λ(a, λ(d, c, b), e) = λ(a, λ(d, c, b), λ(d, d, e))

= λ(a, λ(d, c, b), λ(d, c, λ(c, d, e)))

= λ(a, λ(d, c, b), λ(d, c, λ(b, b, λ(c, d, e))))

= λ(a, λ(d, c, b), λ(λ(d, c, b), b, λ(c, d, e)))

= λ(λ(a, λ(d, c, b), λ(d, c, b)), b, λ(c, d, e))

= λ(a, b, λ(c, d, e)) .

So in this context, it is not such a great surprise that a definition of quantum
torsor can really do without the existence of a Grunspan map. Nevertheless,
such a map is always there.



Chapter 2

Torsor Structures in “Nature”

2.1 Fiber Functors and Cohomomorphism

Objects

Let H be a k-flat Hopf algebra. As was shown by Ulbrich in [54] and [55],
the H-Galois extensions of k are in one-to-one correspondence with so-called
fiber functors from the category of left H-comodules to the category of k-
modules. This is a noncommutative version of a result for classical torsors
shown by Saavedra Rivano and Deligne-Milne.

We recall the definition of fiber functor from [55]. It is the noncommutative
analogue to the notion of fiber functor for commutative Hopf algebras as
introduced in [36].

Definition 2.1.1 Let H be a k-flat Hopf algebra. A k-linear functor ω : HM
−→Mk from the category of left H-comodules to the category of k-modules is
called a fiber functor, if it is monoidal, faithful, exact and preserves colimits.

Let H be a Hopf algebra over a field K. Then a K-linear functor ω : HMf

−→ K-Vec from the category HMf of finite dimensional H-comodules to the
category of K-vector spaces is called a fiber functor if it is monoidal and
exact.

It is shown in [55], that for a field K each fiber functor on HMf is faithful and
takes values in the category of finite dimensional K-vector spaces. Moreover,
due to the finiteness theorem for comodules, the restriction functor induces
a category equivalence between the category of fiber functors on HM and
fiber functors on HMf .
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Now letH be again a k-flat Hopf algebra over a commutative ring k. Together
with morphisms the monoidal natural transformations, the fiber functors ω :
HM−→Mk form a category. The main results from [55] can be summarized
as follows, see also [38]:

Theorem 2.1.2 ([55]) Let H be a k-flat Hopf algebra. There is a bijection
between isomorphism classes of fiber functors ω : HM −→ Mk and isomor-
phism classes of faithfully flat right H-Galois extensions A of k.
The functor ωA : HM −→ Mk corresponding to a right H-Galois extension
A is given by ωA(M) := A2HM for M ∈ HM.
The H-Galois extension corresponding to a fiber functor ω : HM −→Mk is
given by A := ω(H).

In [55] Ulbrich points out another way of determining an H-Galois extension
A from the fiber functor ω : HM−→Mk , M 7→ A2HM :
Let ν : HM−→Mk denote the forgetful functor. Then the k-module A turns
out to be the representing object of the functor M 7→ Nat(ω,M ⊗ ν), where
the latter denotes the set of all natural transformations ω −→ M ⊗ ν with
(M ⊗ ν)(N) := M ⊗ ν(N) for all N ∈ HM. The corresponding isomorphism
ρ : Hom(A,M) −→ Nat(ω,M⊗ν) is given by ρ(f)(

∑
ai⊗mi) =

∑
f(ai)⊗mi

for all
∑
ai ⊗mi ∈ A2HM = ω(M) and f ∈ Hom(A,M).

At this point we have to recall the definition and properties of cohomo-
morphism objects from [32] or the appendix (where their main features are
summarized). Then we see immediately that A is the cohomomorphism ob-
ject of the functors ω and ν, that is A ∼= cohom(ν, ω). This implies that
there is a structure of coend(ω)-coend(ν)-bicomodule on A.
Since ω, ν : HM−→Mk are monoidal functors, it moreover follows that A is
a right coend(ν)-comodule algebra. By Tannaka duality we have coend(ν) ∼=
H, since ν : HM−→Mk is the forgetful functor.

The following theorem from [38] shows the role of the bialgebra coend(ω) in
this context:

Theorem 2.1.3 ([38]) Let A be an L-H-bi-Galois extension of k. Then the
fiber functor ωA : HM −→ Mk , M 7→ A2HM induces an equivalence of
monoidal categories

FA : HM3M 7→ A2HM ∈ LM

and we have

coend(ωA) ∼= L .
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In particular, every fiber functor ω : HM −→Mk factors as ω ∼= νF , where
ν : LM−→Mk is the underlying functor with L a Hopf algebra, and F is an
equivalence.

Schauenburg [38] calls two k-bialgebras H and F monoidally co-Morita equiv-
alent, if the monoidal categories HM and FM are equivalent as monoidal
k-linear categories. We state a consequence of the previous theorem, also
from [38]:

Corollary 2.1.4 ([38]) Let H and F be k-flat Hopf algebras. The following
are equivalent:

1) H and F are monoidally co-Morita equivalent.

2) There exists a faithfully flat F -H-bi-Galois extension of k.

As a motivation for the next section, we investigate the properties of the
H-Galois extension A arising from a fiber functor:

Let H be a k-flat Hopf algebra, and let P,Q be two faithfully flat right H-
Galois extensions of k. By Theorem 2.1.2, P and Q give rise to two fiber
functors

ω1 : HM−→Mk , M 7→ P2HM

ω2 : HM−→Mk , M 7→ Q2HM .

We apply Theorem 2.1.3 to see that there exist equivalences F1,F2 such that
the diagrams

HM coend(ωi)M-Fi

Mk

ωi

@
@
@
@@R

νi

�
�

�
��	

commute for i = 1, 2, where νi : coend(ωi)M −→ Mk denotes the respec-
tive forgetful functor. Since F1 is an equivalence, there exists a functor
G1 : coend(ω1)M −→ HM such that F1G1

∼= Id and G1F1
∼= Id, and we can

immediately conclude that coend(ω1) ∼= coend(ω2) through the equivalence
F2G1.
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On the other hand, we know that each such equivalence of comodule cate-
gories is given as

φA : coend(ω1)M−→ coend(ω2)M , M 7→ A2coend(ω1)M

for some faithfully flat coend(ω2)-coend(ω1)-bi-Galois extension A of k. Let
ν : HM −→ Mk denote the underlying functor. As shown above, we have
A ∼= cohom(ν1, φA), P ∼= cohom(ν, ω1) and Q ∼= cohom(ν, ω2).

We now claim that A ∼= cohom(ω1, ω2). Let ωA : coend(ω1)M −→ Mk be the
functor that arises through the equivalence φA by defining ωA := ν2φA. Then
we have

ωAF1 = ν2φAF1
∼= ν2F2G1F1

∼= ν2F2 = ω2 .

The following diagram describes the relations between the functors that arise
in this situation:

coend(ω1)M HM-
G1

� F1
cohom(ω2)M-F2

?

ω1

Mk

?

ω2ν1

Q
Q
Q
Q
Q
Q
QQs

ωA

Q
Q
Q
Q
Q
Q
QQs

ν2

�
�

�
�
�

�
��+

Since A is a right coend(ω1)-Galois extension, we have A ∼= cohom(ν1, ωA).
Using that the functor F1 is an equivalence, we obtain by Corollary D.7 and
the formulas above that

A ∼= cohom(ν1, ωA) ∼= cohom(ν1F1, ωAF1) ∼= cohom(ω1, ω2) .

Corollary 2.1.5 The cohomomorphism object cohom(ω1, ω2) describes the
category equivalence φA : coend(ω1)M −→ coend(ω2)M that is induced by the
functors ω1 and ω2. Consequently, the quasiinverse of φA is given by φA−1

with A−1 ∼= cohom(ω2, ω1).

What we have just seen is that not only cohomomorphism objects
cohom(ν, ω) with ν the forgetful functor and ω a fiber functor carry the
structure of a bi-Galois extension. On the contrary, it is also possible for an
arbitrary choice of functors ω1 and ω2 to create a cohomomorphism object
cohom(ω1, ω2) that possesses a structure of bi-Galois extension. So we will
keep this generality in the next section, where we construct quantum torsor
structures on arbitrary cohomomorphism objects.
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2.2 Quantum Torsor Structures on

Cohomomorphism Objects

The main result from Ulbrich in [56] is a reconstruction theorem for Hopf
algebras. Given any monoidal functor ω : C −→Mk

f from a small monoidal
category C into the category of finitely generated projective k-modules, one
can always reconstruct a bialgebra structure on coend(ω). Ulbrich’s theorem
says that in case the category C is rigid, there exists an antipode map for
coend(ω) such that it becomes a Hopf algebra.
Bichon showed in [3] that the same assumption on rigidity of C allows to
reconstruct a Hopf-Galois system from two functors F ,G : C −→ K-Vec.

In this section, we recover quantum torsor structures on cohomomorphism
objects. We use essentially the same reconstruction methods as Ulbrich, but
apply graphical calculus for the proofs. Apart from being very intuitive,
graphical notation has the advantage of providing results that are valid in
any monoidal category. This is because the calculations are carried out on
the objects of the category and do not use their “elements”. So we con-
sider to following (most) general situation (see also the appendix) in which
reconstruction is possible:

Let (C,⊗, IC) be a small (right) rigid monoidal category, and let (M,⊗, IM)
be a small symmetric monoidal abelian category, which is cocomplete such
that colimits commute with tensor products. We consider two monoidal
functors

ω : C −→M and ν : C −→M

that both factor through the full subcategoryM0 of objects inM that have
right duals. As explained in the appendix, this implies that both coendo-
morphism objects coend(ω) and coend(ν) as well as both cohomomorphism
objects cohom(ν, ω) and cohom(ω, ν) exist.

Recall that by Proposition D.3 there exist comultiplication maps on the co-
homomorphism objects, compatible with the algebra structures, such that
the diagram

cohom(ν, ω) coend(ω)⊗ cohom(ν, ω)-∆ω

cohom(ν, ω)⊗ coend(ν)
?

∆ν

cohom(ν, ω)⊗ cohom(ω, ν)⊗ cohom(ν, ω)-id⊗∆
?

∆⊗id
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commutes. Let µ0 := (id⊗∆)∆ν = (∆⊗ id)∆ω be the resulting map

µ0 : cohom(ν, ω) −→ cohom(ν, ω)⊗ cohom(ω, ν)⊗ cohom(ν, ω) .

It is clear that µ0 is an algebra morphism and coassociative in the sense that
(µ0 ⊗ id⊗ id)µ0 = (id⊗ id⊗µ0)µ0.

Since we assume that the category C is rigid, there exists by definition a
contravariant functor C −→ C , X 7→ X∗ assigning to each object X ∈ C its
right dual X∗ ∈ C.
The dual basis db : IC −→ X∗ ⊗X in C gives rise to a map

dbω(X) : IM ∼= ω(IC) ω(X∗ ⊗X)-ω(db)
ω(X∗)⊗ ω(X) ,-ξ

where ξ is the natural isomorphism belonging to the monoidal functor ω.

The image ω(X∗) of a right dual X∗ ∈ C under the functor ω is naturally a
right dual for ω(X) in M by the natural isomorphism

κ(X) : ω(X)∗ ω(X∗)⊗ ω(X)⊗ ω(X)∗-dbω ⊗ω(X)∗
ω(X∗)-ω(X∗)⊗ev .

We are going to use the graphical notation

evω :=

ωX ωX∗

ω
	 , dbω :=
ω
��

ωX∗ ωX

for the induced duality morphisms evω : ω(X) ⊗ ω(X∗) ∼= ω(X ⊗ X∗) −→
ω(IC) ∼= IM and dbω : IM −→ ω(X∗)⊗ω(X) inM. The natural isomorphism
ξ is omitted in the notation.
To avoid overlapping labels, we use symbols like ωX that stands for ω(X).
In the same manner, we use the labels ωX∗ for ω(X∗) and ω∗X for ω(X)∗.
Cohomomorphism objects cohom(ν, ω) will be denoted simply by (ν, ω).

So the above isomorphism κ(X) is given by

κX =

ω∗X

ω
��
	

ωX∗

with inverse

κ−1
X =

ωX∗��
ω
	

ω∗X

.



2.2. Quantum Torsor Structures on Cohomomorphism Objects 35

It is clear that we have a similar map for the functor ν, which shall we also
call κ.

For each M ∈M and X ∈ C we have the canonical isomorphism

Ψ : Hom(ν(X),M ⊗ ω(X)) Hom(ω(X)∗,M ⊗ ν(X)∗) ,-
∼=

Ψ(f) :=

ω∗X��
f 
	

M ν∗X

with inverse Ψ−1(g) :=

νX ��
g


	
M ωX

.

Hence, we can define a map

Nat(ω,M ⊗ ν) −→ Nat(ν,M ⊗ ω) , γ 7→ γ̃ (2.1)

as follows: For γ ∈ Nat(ω,M ⊗ ν) we let γ̃(X) ∈ Hom(ν(X),M ⊗ ω(X)) be
the preimage of the map

γ∗(X) : ω(X)∗ ω(X∗)-κX M ⊗ ν(X∗)-γX∗ M ⊗ ν(X)∗-
M⊗κ−1

X

under the isomorphism Ψ. This means that

γ̃X =

νX ��
κ

γX∗

κ−1
	
M ωX

=

νX ��
ω
��
	

γX∗��
ν
	
	

M ωX

=

νX

ω
��

γX∗

ν
	
M ωX

.

The square

ν(X) M ⊗ ω(X)-γ̃(X)

ν(Y )
?

ν(f)

M ⊗ ω(Y )
?

M⊗ω(f)

-γ̃(Y )
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commutes for all X, Y ∈ C and f ∈ HomC(X, Y ), since

(M ⊗ ω(f)) ◦ γ̃(X) =

νX

ω
��

γX∗

ωf

ν
	
M ωY

=

νX

ω
��

ωf∗

γX∗

ν
	
M ωY

=

=

νX

ω
��

γX∗

νf∗

ν
	
M ωY

=

νX

ω
��

νf

γX∗

ν
	
M ωY

= γ̃Y ◦ νf

by naturality of γ and the symmetry in M, and the definition of the trans-
posed morphism f ∗ : Y ∗ −→ X∗. Thus, γ̃ is a natural transformation in
Nat(ν,M ⊗ ω).

We observe that γ∗(X) : ω(X)∗ −→M⊗ν(X)∗, which is the image of γ̃ under
Ψ, is given by

γ∗(X) =

ω∗X

ω
��
	

γX∗��
ν
	

M ν∗X

, (2.2)

for each X ∈ C. It is also a natural transformation.

By the Yoneda Lemma and the universal property of the cohomomorphism
objects cohom(ν, ω) and cohom(ω, ν), we obtain that the mapping γ 7→ γ̃
from (2.1) is uniquely determined by a morphism

S : cohom(ω, ν) −→ cohom(ν, ω) (2.3)

such that the diagram
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Nat(ω,M ⊗ ν) Nat(ν,M ⊗ ω)-γ 7→γ̃

Hom(cohom(ν, ω),M)
?

∼=

Hom(cohom(ω, ν),M)-Hom(S,id) ?

∼=

commutes. We can now insert cohom(ν, ω) instead of M into this diagram
and use the fact that the natural transformation δω,ν : ω −→ cohom(ν, ω)⊗ ν
is induced by the identity id : cohom(ν, ω) −→ cohom(ν, ω). This implies
δ̃ω,ν = (S ⊗ id) ◦ δν,ω, which is

δ̃ω,ν(X) =

νX

ω
��

��

ν
	
(ν,ω) ωX

=

νX

��

hS
(ν,ω) ωX

. (2.4)

Applying the isomorphism Ψ to δ̃ yields the following formula for δ∗ from
(2.2). It can be considered as an induced comultiplication on ω(X)∗.

δ∗ω,ν(X) =

ω∗X

ω
��

�� 
	��
ν
	

(ν,ω) ν∗X

=

ω∗X� �
��hS 
	

(ν,ω) ν∗X

. (2.5)

Now we can express δω,ν(X
∗) as

δω,ν(X
∗) =

ωX∗� �
�� ��hS ω
	
	

ν
��
	

(ν,ω)νX∗

=

ωX∗

ν
� �
��hS

ω
	
(ν,ω) νX∗

. (2.6)
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Proposition 2.2.1 The morphism S : cohom(ω, ν) −→ cohom(ν, ω) in (2.3)
is an algebra anti-morphism.

Proof. We know from Corollary D.15 that there is an isomorphism

Nat⊗(ν, cohom(ν, ω)op ⊗ ω) ∼= Alg(cohom(ω, ν), cohom(ν, ω)op)

and that the image of δ̃ under this isomorphism is S. So we have to show
that δ̃ω,ν ∈ Nat(ν, cohom(ν, ω) ⊗ ω) is a monoidal natural transformation
when cohom(ν, ω) is endowed with its opposite algebra structure. In other
words, we have to check that the diagram

ν(X)⊗ ν(Y ) cohom(ν, ω)⊗ cohom(ν, ω)⊗ ω(X)⊗ ω(Y )-δ̃(X)⊗δ̃(Y )

ν(X ⊗ Y )
?

ξ

cohom(ν, ω)⊗ ω(X ⊗ Y )-δ̃(X⊗Y ) ?

∇op⊗ξ

commutes, where ξ denotes in either case the isomorphism that belongs to
the monoidal functor ω resp. ν. With formula (2.4) we get

(δ̃(X)⊗ δ̃(Y ))(∇op ⊗ ξ) =

νX νY

ω
��

ω
��

�� ��

ν
	 ν
	

	 ξ

(ν,ω) ωX⊗Y

=

νX νY

ω
� �

ω
��

�� ��

ν� 
ν� 
	 ξ

(ν,ω) ωX⊗Y

=

=

νX νY

ω
� �

ω
��

�� ��


	
ν� 
ν� 

ξ

(ν,ω) ωX⊗Y

=

νX νY

ξ ω
��

��

ν
	
(ν,ω) ωX⊗Y

= δ̃(X ⊗ Y )ξ
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using naturality of the duality morphisms and the fact that δ is a monoidal
natural transformation. Hence, the diagram commutes and we obtain that
S is an algebra anti-morphism. 2

Now that we have constructed an algebra morphism between the cohomo-
morphism objects cohom(ω, ν) and cohom(ν, ω)op, we can define an algebra
morphism

µ : cohom(ν, ω) −→ cohom(ν, ω)⊗ cohom(ν, ω)op ⊗ cohom(ν, ω)

by µ := (id⊗S ⊗ id)µ0.
It is obvious that µ inherits the coassociativity property from µ0 and hence
satisfies the coassociativity axiom 3) in Definition 1.4.1.

For further calculations we note that µ is induced via the universal property
of cohom(ν, ω) by

ωX

��

µ

(ν,ω) (ν,ω) (ν,ω) νX

=

ωX

��

µ0

hS
(ν,ω) (ν,ω) (ν,ω) νX

=

ωX

��

��

��hS
(ν,ω) (ν,ω) (ν,ω) νX

, (2.7)

as follows from Proposition D.3.

Proposition 2.2.2 The coendomorphism object cohom(ν, ω) becomes a
quantum torsor with the torsor structure map µ and the Grunspan map
θ := S ◦ T , where T is constructed analogously to S with the roles of ω
and ν interchanged.

Proof. We verify that (cohom(ν, ω), µ, θ) satisfies the five axioms of a quan-
tum torsor in Definition 1.4.1. We have already noted that axiom 3) holds.

Axiom 1) will follow from the equality

ωX

��

��

��hS� 
(ν,ω) (ν,ω) νX

=

ωX

��r
(ν,ω) (ν,ω) νX

,
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since these are the maps that induce, via the universal property of
cohom(ν, ω), the maps (∇ ⊗ id)µ resp. η ⊗ id. By naturality of δ applied
to the evaluation map, the diagram

ω(X)⊗ ω(X∗) IM-evω

cohom(ν, ω)⊗ cohom(ν, ω)⊗ ν(X)⊗ ν(X∗)
?

δX⊗δX∗

cohom(ν, ω)⊗ ν(X)⊗ ν(X∗)
?

∇⊗id⊗ id

cohom(ν, ω)-id⊗ evν
?

δI=η

commutes. This means that we have

ωX ωX∗

�� ��


	
ν
	

(ν,ω)

=

ωX ωX∗

r ω
	
(ν,ω)

,

and thus

ωX

��

��

��hS� 
(ν,ω) (ν,ω) νX

=

ωX

�� � �
��hS ��
	


	
	 ��

(ν,ω) (ν,ω) νX

=

ωX

��

ω
����
	

��

����
	 ν
	
	
(ν,ω) (ν,ω) νX

=

=

ωX

��

ω
��

��


	 ν
	��
(ν,ω) (ν,ω) νX

=

ωX

ω
��

ω
	r ��

(ν,ω)(ν,ω) νX

=

ωX

��r
(ν,ω)(ν,ω) νX

,

using the relation (2.5) in the second equality. The axiom 2) is proved simi-
larly by using naturality of δ with respect to the dual basis:
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IM ω(X∗)⊗ ω(X)-dbω

cohom(ν, ω)
?

δI=η

cohom(ν, ω)⊗ ν(X∗)⊗ ν(X)-id⊗ dbν

cohom(ν, ω)⊗ cohom(ν, ω)⊗ ν(X)∗ ⊗ ν(X)
?

δX∗⊗δX

?

∇⊗id⊗ id

The resulting equality

ω
� �

�� ��


	
(ν,ω)νX∗νX

=
r

ν
��

(ν,ω)νX∗νX

implies

ωX

��

��

��hS� 
(ν,ω) (ν,ω) νX

=

ωX

�� � �� �
�� ��hS 
	
� 
� 

(ν,ω)(ν,ω) νX

=

ωX

�� � �
ω
��

�� 
	����
ν
	
� 
� 

(ν,ω)(ν,ω) νX

=

=

ωX

��

ω
� �

�� ��


	
ν� 

(ν,ω)(ν,ω) νX

=

ωX

��

r ν
��

ν
	
(ν,ω)(ν,ω) νX

=

ωX

��

r
(ν,ω)(ν,ω) νX

,
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and this proves axiom 2).

We claim that the Grunspan map for cohom(ν, ω) is given by θ := S ◦ T ,
where T : cohom(ν, ω) −→ cohom(ω, ν) is constructed analogously to S with
the roles of ν and ω interchanged.

The following diagram commutes by definition of µ0 :

ω(X∗) (ν, ω)⊗ ν(X∗)-δX∗

(ν, ω)⊗ ν(X∗)
?

δX∗

(ν, ω)⊗ (ω, ν)⊗ ω(X∗)
?

id⊗δX∗

(ν, ω)⊗ (ω, ν)⊗ (ν, ω)⊗ ω(X∗)-id⊗ id⊗δX∗
?

µ0⊗id

Therefore, we obtain

ωX

��

��

��hS hT ��hS hS ��

(ν,ω)(ν,ω) (ν,ω)(ν,ω)(ν,ω) ωX

=

ωX

�� ω
��

ν
� �
��hS ω
	

ω
� � ��

��hT ν
	
ν
� �
��hS hS ω
	

ν
	
(ν,ω)(ν,ω)(ν,ω) (ν,ω) (ν,ω) νX

=
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=

ωX

�� ω
� �

��

��

��

��hS
ν
	

(ν,ω)(ν,ω)(ν,ω)(ν,ω) (ν,ω) νX

=

ωX

�� ω
� �

��

��
µ0 ν
	
hS

(ν,ω)(ν,ω)(ν,ω)(ν,ω) (ν,ω) νX

=

=

ωX

�� ��� �
��hS 
	

��
	
µ0

hS
(ν,ω) (ν,ω) (ν,ω) (ν,ω) (ν,ω) νX

=

ωX

��

��

��hS
µ0

hS
(ν,ω) (ν,ω) (ν,ω) (ν,ω) (ν,ω) νX

,

which shows that the maps inducing

(id⊗σ13 ⊗ id)(id⊗ id⊗θ ⊗ id⊗ id)(id⊗ id⊗µ)µ

resp.
(id⊗µ⊗ id)µ

are equal. This means that axiom 4) holds.
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For X ∈ C we denote by X∗∗ the right dual of X∗. In the categoryM, there
is an isomorphism between ω(X) and ω(X∗∗) given by

ω(X) ω(X)⊗ ω(X∗∗)⊗ ω(X∗)-id⊗ dbω(X∗) -σ⊗id

ω(X∗∗)⊗ ω(X)⊗ ω(X∗)- ω(X∗∗) ,-id⊗ evω(X)

that is

ωX

ω
��
ω
	

ωX∗∗

.

Of course, there is an analogous isomorphism ν(X) ∼= ν(X∗∗). We note that
such relations between an object X and its bi-dual X∗∗ require the existence
of a braiding in the respective monoidal category.

Now we observe that

δ(X∗∗) =

ωX∗∗

ν
� �
��hS ω
	

(ν,ω) νX∗∗

=

ωX∗∗

ν
� �

ω
� �
��hT ν
	
hS

ω� 
(ν,ω) νX∗∗

=

ωX∗∗

ω
��
ω
	
��

ν
��hThS ν
	

(ν,ω) νX∗∗

.

This means that we can express δ(X∗∗) in terms of δ(X) by

ωX

��

hThS
(ν,ω) νX

=

ωX

ω
��
ω
	

��

ν
��
ν
	

(ν,ω) νX

. (2.8)
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Hence we have

ωX

��

µ

hT hT hThS hS hS
(ν,ω) (ν,ω) (ν,ω) νX

=

ωX

��

��

��hS
hT hT hThS hS hS

(ν,ω) (ν,ω) (ν,ω) νX

=

ωX

ω
��
ω
	

��

ν
��

ν
��

ν
	
ν
	

��

ω
��

ω
��

ω
	hS ω
	
��

ν
��
ν
	

(ν,ω)(ν,ω) (ν,ω) νX

=

=

ωX

ω
��
ω
	

��

��

��hS
ν
��
ν
	

(ν,ω) (ν,ω) (ν,ω) νX

=

ωX

ω
��
ω
	

��

ν
��

µ

ν
	
(ν,ω)(ν,ω)(ν,ω) νX

=

ωX

��

hThS
µ

(ν,ω)(ν,ω)(ν,ω) νX

,

proving axiom 5).

Altogether we have seen that cohom(ν, ω) carries the structure of a quantum
torsor with the Grunspan map θ = S ◦ T . Analogously, we can conclude
that also cohom(ω, ν) becomes a quantum torsor with the Grunspan map
θ = T ◦ S. 2
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Remark 2.2.3 Applying the same method to the special case ν = ω yields
antipodes Sω : coend(ω) −→ coend(ω) and Sν : coend(ν) −→ coend(ν) for the
bialgebras coend(ω) and coend(ν). This is Ulbrich’s result in [56].
While constructing the quantum torsor structure on cohom(ν, ω) in the pre-
vious proposition, we have in fact shown that the map S : cohom(ω, ν)
−→ cohom(ν, ω)makes (coend(ω), coend(ν), cohom(ν, ω), cohom(ω, ν)) into a
Hopf-Galois system. This generalizes Bichon’s result in [3].

We note that the torsor structure map for cohomomorphism objects from
the previous proposition resembles, and in fact generalizes, the trivial torsor
structure of a Hopf algebra in Example 1.4.2. So in “nature”, Hopf algebras
really appear as a special case of quantum torsors (namely when ν = ω).
The Grunspan map θ can thus be interpreted as a generalized square of the
antipode.

Remark 2.2.4 We address the question, whether there are situations in
which θ = S ◦ T = id holds. By the formula (2.8) for S ◦ T in the proof of
axiom 5) and the construction of S and T , we see that θ = id is equivalent
to

ωX

��

(ν,ω) νX

=

ωX

ω
��
ω
	

��

ν
��
ν
	

(ν,ω) νX

.

In order to have a connection between X and X∗∗ in the category C, we
assume that the category C is braided with a braiding τ . Then each X ∈ C
is isomorphic to X∗∗ in C via the obvious natural isomorphism

ϕ(X) :=

X ��

	

X∗∗

with inverse ϕ−1(X) :=

X∗∗��

	

X

.
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By naturality of δ : ω −→ cohom(ν, ω)⊗ ν we then have

δ(X∗∗) =

ωX∗∗

ω
��
ω(τ)

ω
	
��

ν
��

ν(τ)

ν
	
(ν,ω) νX∗∗

.

So we could obviously derive the above equation if the diagram

ω(X ⊗ Y ) ω(X)⊗ ω(Y )-ξ

ω(Y ⊗X)
?

ω(τ)

ω(Y )⊗ ω(X)-ξ
?

σ

and an analogous one for the functor ν were commutative. This diagram says
that the functors ω, ν have to map the braiding τ of C onto the symmetry σ
in M.

Obviously, the condition that ω and ν preserve braidings is a quite restrictive
one, and not necessarily satisfied. We give an example for the case of fiber
functors that we discussed in the previous section:

Example 2.2.5 Let K be a field and let H be a K-Hopf algebra. Then the
category C := HMf of finite dimensional H-comodules is rigid and monoidal
(see also the appendix). Let A be a finite dimensional H-Galois extension
of K. Then the fiber functor ω : HMf −→ K-Vec , M 7→ A2HM and
the forgetful functor ν : HMf −→ K-Vec both take values in the category
of finite dimensional K-vector spaces, and satisfy our general conditions.
Hence, by our results above, both cohom(ν, ω) ∼= A and cohom(ω, ν) ∼= A−1

are quantum torsors.
It is well-known, see for instance [28], that the category HM is braided and
monoidal with the tensor product from the underlying category K-Vec iff H
is a coquasitriangular Hopf algebra. The induced braiding in HM is equal to
the symmetry of K-Vec if H is commutative. Then, of course, the forgetful
functor ν maps it to the symmetry of M. In this case, the braiding is also
preserved by the fiber functor ω, and so we obtain θ = id by what we have
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shown above. But if H ∼= coend(ν) is commutative, then the square of its
antipode is the identity, and we can observe that θ = S ◦ T inherits this
behaviour. 2



Chapter 3

Antipodes in Hopf-Galois
Systems

3.1 Total Hopf-Galois Systems and

their Properties

A Hopf-Galois system as defined by Bichon in [3], see Definition 1.3.1, car-
ries exactly all the data needed for constructing a Hopf bi-Galois extension
from it. Let L and H be k-flat bialgebras and let A be a faithfully flat L-H-
bi-Galois extension. Out of this setting, Schauenburg [38] has constructed
another algebra A−1 that is an H-L-bi-Galois extension of k. So the corre-
sponding Hopf-Galois system (L,H,A,A−1) seems to encode even more data,
namely the structure maps of another Hopf-Galois system (H,L,A−1, A).
This connection became also obvious in the previous chapter, where the
cohomomorphism objects cohom(ν, ω) and cohom(ω, ν) showed a similar be-
haviour.
Bichon’s definition was extended by Grunspan in [18] to the notion of a total
Hopf-Galois system. The latter contains the complete set of data that arises
from the two Hopf-Galois systems that can be associated to an L-H-bi-Galois
extension A.

Recall from the previous chapter that the natural quantum torsor struc-
ture on cohom(ν, ω) was really based on a bicomodule algebra structure.
Then, under a rigidity assumption, we constructed maps S : cohom(ω, ν)
−→ cohom(ν, ω) and T : cohom(ν, ω) −→ cohom(ω, ν) that allowed us to de-
fine the torsor structure maps on cohom(ν, ω).
We are going to put emphasis on this two-step construction that we also
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know from Hopf algebras: A Hopf algebra is a bialgebra which possesses an
antipode map. Keeping in mind that the map S : Z −→ T in a Hopf-Galois
system (L,H, T, Z) has properties that are similar to those of an antipode, or
more concretely seem to generalize them, we start from a bicomodule algebra
system. We define it such that it can be seen as the underlying object of a
total Hopf-Galois system. Then we develop methods that uncover a striking
similarity between Hopf algebras and total Hopf-Galois systems.

We mainly use graphical notations in this section. While all the definitions
and results clearly also make sense in any symmetric monoidal category, we
are mainly interested in the category Mk of modules over a commutative
ring k.

Definition 3.1.1 A bicomodule-algebra system (L,H, T, Z) consists of

• bialgebras L and H with comultiplication ∆L resp. ∆H and counit εL
resp εH .

• an (L,H)-bicomodule algebra T with comodule structure maps δL,T
and δT,H and an (H,L)-bicomodule algebra Z with comodule structure
maps δH,Z and δZ,L.

• algebra morphisms ρL : L −→ T ⊗ Z and ρH : H −→ Z ⊗ T ,

such that the following diagrams commute:

T L⊗ T-δL,T

T ⊗H
?

δT,H

T ⊗ Z ⊗ T-
id⊗ρH

?

ρL⊗id(B1)

Z H ⊗ Z-δH,Z

Z ⊗ L
?

δZ,L

Z ⊗ T ⊗ Z-
id⊗ρL

?

ρH⊗id(B2)

L L⊗ L-∆L

T ⊗ Z
?

ρL

L⊗ T ⊗ Z-
δL,T⊗id

?

id⊗ρL(B3)

H H ⊗H-∆H

Z ⊗ T
?

ρH

H ⊗ Z ⊗ T-
δH,Z⊗id

?

id⊗ρH(B4)

H H ⊗H-∆H

Z ⊗ T
?

ρH

Z ⊗ T ⊗H-
id⊗δT,H

?

ρH⊗id(B5)

L L⊗ L-∆L

T ⊗ Z
?

ρL

T ⊗ Z ⊗ L-
id⊗δZ,L

?

ρL⊗id(B6)
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We note that the axioms (B1), (B3), and (B5) are also a part of Bichon’s
Hopf-Galois system in Definition 1.3.1. The three diagrams in the right
column are their counterparts with respect to the algebra Z.

For calculations in Mk, we introduce the notation

ρL(`) =:
∑

`T ⊗ `Z =: `T ⊗ `Z ∈ T ⊗ Z

for all ` ∈ L, and analogously

ρH(h) =: hZ ⊗ hT ∈ Z ⊗ T

for h ∈ H.
Then for instance, the diagrams (B3) and (B6) read as

`T (−1) ⊗ `T (0) ⊗ `Z = `(1) ⊗ `(2)
T ⊗ `(2)

Z

and
`T ⊗ `Z (0) ⊗ `Z (1) = `(1)

T ⊗ `(1)
Z ⊗ `(2) ,

which implies the equation

`T (−1) ⊗ `T (0) ⊗ `Z (0) ⊗ `Z (1) = `(1) ⊗ `(2)
T ⊗ `(2)

Z ⊗ `(3)

for all ` ∈ L. This can also be derived via graphical calculus as

L

ρL

�� PP

L T Z L

(B6)
=

L��
ρL

��

L T Z L

(B3)
=

L��
��

ρL

L T Z L

=

L��
��

ρL

L T Z L

. (3.1)

We deduce some more equalities for further applications: By (B2), (B6),
(B3) and (B1) we get

L

ρL

��

ρH

T Z T Z

=

L

ρL

PP

ρL

T Z T Z

=

L��
ρL ρL

T Z T Z

=

L

ρL

��

ρL

T Z T Z

=

L

ρL

PP

ρH

T Z T Z

. (3.2)
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The axiom (B1) yields an algebra morphism λT : T −→ T ⊗ Z ⊗ T

λT := (ρL ⊗ id)δL,T = (id⊗ρH)δT,H ,

λT =

T

λT

T Z T

=

T
��

ρL

T Z T

=

T
PP

ρH

T Z T

.

It satisfies

(id⊗ id⊗λT )λT = (λT ⊗ id⊗ id)λT

by the axioms (B5) and (B1) :

(id⊗ id⊗λT )λT =

T

λT

λT

T Z T Z T

=

T
PP

ρH

PP

ρH

T Z T Z T

=

T
PP��
ρH

ρH

T Z T Z T

=

T
PP

PP

ρH ρH

T Z T Z T

=

T
PP

�� ρH

ρL

T Z T Z T

=

T
��

ρL

��

ρL

T Z T Z T

=

T

λT

λT

T Z T Z T

= (λT ⊗ id⊗ id)λT .

Analogously, replacing T by the algebra Z, we arrive at an algebra morphism
λZ : Z −→ Z ⊗ T ⊗ Z, that is also coassociative in the above sense.
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Now we define morphisms of bicomodule algebra systems. Of course, they
have to be compatible with the axioms in Definition 3.1.1.

Definition 3.1.2 Let (L,H, T, Z) and (L′, H ′, T ′, Z ′) be two bicomodule-
algebra systems. A morphism of bicomodule-algebra systems

(`, h, f, g) : (L,H, T, Z) −→ (L′, H ′, T ′, Z ′)

consists of bialgebra morphisms ` : L −→ L′, h : H −→ H ′ and algebra
morphisms f : T −→ T ′, g : Z −→ Z ′ such that the following diagrams
commute:

L L′-`

T ⊗ Z
?

ρL

T ′ ⊗ Z ′-
f⊗g

?

ρL′(M1)

H H ′-h

Z ⊗ T
?

ρH

Z ′ ⊗ T ′-
g⊗f

?

ρH′(M2)

T T ′-f

L⊗ T
?

δL,T

L′ ⊗ T ′-
`⊗f

?

δL′,T ′(M3)

Z Z ′-g

H ⊗ Z
?

δH,Z

H ′ ⊗ Z ′-
h⊗g

?

δH′,Z′(M4)

T T ′-f

T ⊗H
?

δT,H

T ′ ⊗H ′-
f⊗`

?

δT ′,H′(M5)

Z Z ′-g

Z ⊗ L
?

δZ,L

Z ′ ⊗ L′-
g⊗h

?

δZ′,L′(M6)

Now that we have defined our base category, we can write down generalized
antipode axioms.
An antipode S for a bialgebra H is defined as the convolution inverse of the
identity in Hom(H,H). This can be expressed by requiring that S satisfy
the two equations

S(h(1))h(2) = ηε(h) , h(1)S(h(2)) = ηε(h)

for all h ∈ H.
Since there is no obvious convolution algebra for a bicomodule algebra sys-
tem, we define our generalized antipodes in terms of similar equations. This
leads to Grunspan’s definition of a total Hopf-Galois system from [18].
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Definition 3.1.3 A total Hopf-Galois system

(L,H, T, Z, SL, SH , ST , SZ)

is a total bicomodule-algebra system (L,H, T, Z) endowed with the following
additional data:

• L and H are Hopf algebras with antipodes SL resp. SH .

• there exist maps ST : T −→ Z and SZ −→ T , that make the following
diagrams commute:

L I-
εL

T-
ηT

T ⊗ Z
?

ρL

T ⊗ T-
id⊗SZ

6

∇T(A1)

H I-
εH

Z-
ηZ

Z ⊗ T
?

ρH

Z ⊗ Z-
id⊗ST

6

∇Z(A2)

H I-
εH

T-
ηT

Z ⊗ T
?

ρH

T ⊗ T-
SZ⊗id

6

∇T(A3)

L I-
εL

Z-
ηZ

T ⊗ Z
?

ρL

Z ⊗ Z-
ST⊗id

6

∇Z(A4)

We call ST and TZ the generalized antipodes of the total Hopf-Galois
system.

We define a morphism of Hopf-Galois systems to be a morphism of the un-
derlying bicomodule-algebra systems.

Remark 3.1.4 Given a Hopf-Galois system (L,H, T, Z, SL, SH , ST , SZ), we
can endow L and H with their opposite coopposite bialgebra structures to
obtain the Hopf algebras Lopcop and Hopcop. The opposite algebras T op and
Zop can be considered as (Hopcop, Lopcop)- resp. (Lopcop, Hopcop)-bicomodule
algebras with the comodule structures σ ◦ δ. We denote these bicomodule
algebras as T opcop resp. Zopcop. Then the algebra morphisms

ρLopcop : Lopcop T opcop ⊗ Zopcop-ρL
Zopcop ⊗ T opcop-σ

ρHopcop : Hopcop Zopcop ⊗ T opcop-ρH
T opcop ⊗ Zopcop-σ ,

make (Lopcop, Hopcop, Zopcop, T opcop, SH , SL, SZ , ST ) into a total Hopf-Galois
system.
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Proof. The axioms for (Lopcop, Hopcop, Zopcop, T opcop) can all be deduced
from the properties of the Hopf-Galois system (L,H, T, Z). For instance,
the axiom (B1) follows from the commutative diagram

Z Z ⊗ L-δZ,L
L⊗ Z-σ

H ⊗ Z
?

δH,Z

Z ⊗ T ⊗ Z-ρH⊗id
T ⊗ Z ⊗ Z-σZ,T⊗Z

?

ρL⊗id

?

id⊗ρL

Z ⊗H
?

σ

Z ⊗ Z ⊗ T-
id⊗ρH

(B2)

Z ⊗ T ⊗ Z-
id⊗σ

?

σZ⊗T,Z

?

σ⊗id

and (B6) follows from

L L⊗ L-∆L L⊗ L-σ

T ⊗ Z
?

ρL

L⊗ T ⊗ Z-δL,T⊗id

(B6)

T ⊗ Z ⊗ L-σL,T⊗Z
?

ρL⊗id

?

id⊗ρL

Z ⊗ T
?

σ

Z ⊗ L⊗ T-
id⊗δL,T

Z ⊗ T ⊗ L-
id⊗σ

?

σL⊗T,Z

?

σ⊗id

The remaining axioms for a bicomodule-algebra system can be shown sim-
ilarly. The generalized antipode axioms can be shown via diagrams of the
following kind:

L I-
εL

Z-
ηZ

T ⊗ Z
?

ρL

Z ⊗ Z-
ST⊗id

(A4)

6

∇Z

Z ⊗ T
?

σ

Z ⊗ Z-
id⊗ST

6

σ

2
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The antipode of a Hopf algebra H is defined as the convolution inverse of
the identity on H. It is therefore uniquely determined by the structure
morphisms of the underlying bialgebra. Since the generalized antipodes of
a total Hopf-Galois system are not defined through such a property, but via
axioms that generalize those of an antipode, it is not clear whether they are
uniquely determined.
We are going to show that a generalized antipode always plays the role of
the unit in a suitably chosen associative multiplication. A unit element in a
monoid is uniquely determined by the monoid structure. This implies that
generalized antipodes are unique.

Proposition 3.1.5 The generalized antipodes of a Hopf-Galois system are
uniquely determined by the structure morphisms of the underlying bicomo-
dule-algebra system.

Proof. Let (L,H, T, Z, SL, SH , ST , SZ) be a total Hopf-Galois system. We
define an associative multiplication on the set Hom(T, Z) by

? : Hom(T, Z)⊗ Hom(T, Z) −→ Hom(T, Z) , p⊗ q 7→ p ? q ,

p ? q :=

T

λT

hp hq
	

	
Z

=

T
��

ρL

hp hq
	

	
Z

=

T
PP

ρH

hp hq
	

	
Z

.

Associativity of this composition follows from coassociativity of λT and as-
sociativity of ∇Z . We show that ST : T −→ Z is a left and right unit for this
multiplication. Let p ∈ Hom(T, Z). Then we obtain

ST ? p =

T

λT

hS hp
	

	
Z

=

T
��

ρL

hS hp
	

	
Z

=

T
��r hpr
	
Z

=

T

hp
Z

= p ,
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using the generalized antipode axiom (A4). Similarly, we get by axiom (A2)
that

p ? ST =

T

λT

hp hS
	

	
Z

=

T
PP

ρH

hp hS
	

	
Z

=

T
PP rhp r
	
Z

=

T

hp
Z

= p .

So it follows by uniqueness of the unit element in a monoid that the gen-
eralized antipode ST is uniquely determined. The same follows for SZ by
applying the above multiplication on Hom(Z, T ). 2

Recall that the antipode of a Hopf algebra is an algebra anti-morphism. The
proof of this result is based on the fact that the antipode is a convolution
inverse. Keeping this in mind, we can apply our technique to show that
the generalized antipodes of a total Hopf-Galois system have an analogous
property:

Proposition 3.1.6 Let (L,H, T, Z, SL, SH , ST , SZ) be a total Hopf-Galois
system. Then the generalized antipodes are algebra morphisms ST : T −→ Zop

and SZ : Z −→ T op.

Proof. We introduce an associative multiplication on Hom(T ⊗ T, Z) by

∗ : Hom(T ⊗ T, Z)⊗ Hom(T ⊗ T, Z) −→ Hom(T ⊗ T, Z) , f ⊗ g 7→ f ∗ g ,

f ∗ g :=

T T

λT λT


	
f g

� � 
Z

.



58 Chapter 3. Antipodes in Hopf-Galois Systems

Associativity of ∗ follows from coassociativity of λT and associativity of the
multiplication on Z. A unit for this multiplication is given by

∇Zop(ST ⊗ ST ) = ∇Z ◦ σ(ST ⊗ ST ) ∈ Hom(T ⊗ T, Z) ,

since we have for f ∈ Hom(T ⊗ T, Z)

(∇Z ◦ σ(ST ⊗ ST )) ∗ f =

T T

λT λT


	hS hS f


	� � 
Z

=

T T

λT λT

hS

	hS

f


	

	� 

Z

=

=

T T

�� λTr
r
hS

f
	

	� 
Z

=

T T

λT

hS
	
f


	
Z

=

T T
��r
r f

	
Z

=

T T

f

Z

= f

by axiom (A4). Similarly, we obtain also f ∗ (∇Zop(ST ⊗ ST )) = f . On the
other hand, using that ρH is an algebra morphism, we can show that ST ◦∇T
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also acts as a unit:

(S ◦ ∇T ) ∗ f =

T T

λT λT


	�  fhS
� � 

Z

=

T T
�� ��

ρL ρL


	
	
fhS
	� 

Z

=

T T
�� ��


	
ρL

hS f
	

	
Z

=

=

T T
�� ��


	r fr

	
Z

=

T T

f

Z

= f .

Now uniqueness of the unit element implies that ST ◦ ∇T = ∇Zop(ST ⊗
ST ), which means that ST is an algebra anti-morphism. The proof for the
generalized antipode SZ : Z −→ T op is analogous. 2

The antipode S of a Hopf algebra H is being preserved by bialgebra mor-
phisms. This means that a morphism of Hopf algebras can be defined as
a morphism of the underlying bialgebras. We have already defined what a
morphism of total Hopf-Galois systems should be. Now we show, that such
a morphism is really compatible with the generalized antipodes:

Proposition 3.1.7 Let (`, h, f, g) : (L,H, T, Z) −→ (L′, H ′, T ′, Z ′) be a mor-
phism of total Hopf-Galois systems. Then the following diagrams commute:

T Z-
ST

T ′
?

f

Z ′-
ST ′

?

g

Z T-
SZ

Z ′
?

g

T ′-
SZ′

?

f

(3.3)

This means that the generalized antipodes are preserved by morphisms of
bicomodule-algebra systems.
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Proof. We define an associative multiplication on Hom(T, Z ′) by

× : Hom(T, Z ′)⊗ Hom(T, Z ′) −→ Hom(T, Z ′) , α⊗ β 7→ α× β ,

α× β :=

T

λT

hα hg hβ
	

	
Z ′

where the algebra morphism g : Z −→ Z ′ comes from the given morphism of
Hopf-Galois systems. It is clear that this multiplication is associative. The
unit is given by ST ′ ◦ f , since we get for α ∈ Hom(T, Z ′)

(ST ′ ◦ f)× α =

T

λT

hf hg hαhS
	

	
Z ′

=

T
��

ρL

hf hg hαhS
	

	
Z ′

=

T
��h̀

ρL′

hS hα
	

	
Z ′

=

T
��h̀r hαr
	
Z ′

=

T
��r hαr
	
Z ′

=

T

hα
Z ′

= α ,

using property (M1). On the other hand, we see that g ◦ ST also acts as a
unit since g is an algebra morphism:

(g ◦ ST )× α =

T

λT

hS hg hαhg
	

	
Z ′

=

T
��

ρL

hS hα
	
hg
	
Z ′

=

T
��r hαrhg
	
Z ′

=

T

hαr
	
Z ′

=

T

hα
Z ′

= α .

Thus, we obtain g◦ST = ST ′◦f by uniqueness of the unit element. This shows
that the first diagram commutes. Commutativity of the second diagram can
be proved analogously. 2
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The antipode S of a Hopf algebra H is initially just defined as a linear map
S : H −→ H. Then its properties imply that it is really an algebra anti-
morphism and a coalgebra anti-morphism, that is, a bialgebra morphism
S : H −→ Hopcop. This fact has a generalization for total Hopf-Galois systems:

The antipodes and generalized antipodes of a Hopf-Galois system (L,H, T, Z)
give rise to a morphism of Hopf-Galois systems

(SL, SH , ST , SZ) : (L,H, T, Z) −→ (Lopcop, Hopcop, Zopcop, T opcop) .

This follows from the next proposition.

Proposition 3.1.8 The antipodes and generalized antipodes of a total Hopf-
Galois system (L,H, T, Z, SL, SH , ST , SZ) are related in the following way:

L L-
SL

T ⊗ Z
?

ρL

Z ⊗ T

ST⊗SZ
@
@
@@R

T ⊗ Z
?

ρL

σ
�
�
��	

H H-
SH

Z ⊗ T
?

ρH

T ⊗ Z

SZ⊗ST
@
@
@@R

Z ⊗ T
?

ρH

σ
�
�
��	

(3.4)

T Z-
ST

L⊗ T
?

δL,T

L⊗ Z

SL⊗ST
@
@
@@R

Z ⊗ L
?

δZ,L

σ
�
�
��	

Z T-
SZ

H ⊗ Z
?

δH,Z

H ⊗ T

SH⊗ST
@
@
@@R

T ⊗H
?

δT,H

σ
�
�
��	

(3.5)

T Z-
ST

T ⊗H
?

δT,H

Z ⊗H

ST⊗SH
@
@
@@R

H ⊗ Z
?

δH,Z

σ
�
�
��	

Z T-
SZ

Z ⊗ L
?

δZ,L

T ⊗ L

SZ⊗SL
@
@
@@R

L⊗ T
?

δL,T

σ
�
�
��	

(3.6)
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Proof. For the first diagram, we define an associative multiplication ∗ on
the set Hom(L, T ⊗ Z) by

∗ : Hom(L, T ⊗ Z)⊗ Hom(L, T ⊗ Z) −→ Hom(L, T ⊗ Z) , u⊗ v 7→ u ∗ v

u ∗ v :=

L� �� �
u ρL v


	 
	

	
	
T Z

.

The unit for this multiplication is given by ρL ◦ SL, since ρL is an algebra
morphism:

(ρL ◦ SL) ∗ u =

L� �� �
hS ρL u

ρL 
	
	

	
	
T Z

=

L� ���hS
u

ρL ρL


	
	

	
	
T Z

=

L� ���hS
	 u

ρL


	
	
T Z

=

=

L� �r ur
ρL


	
	
T Z

=

L

ur r

	
	
T Z

=

L

u

T Z

= u .
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But (SZ ⊗ ST ) ◦ σ ◦ ρL also acts as a unit, as follows from the equation (3.2)
and axioms (B2), (A3) and (A4) :

((SZ ⊗ ST )σρL) ∗ u =

L� �� �
ρL ρL u

hS hS

	 
	

	
	
T Z

=

L� �� �
ρL ρLhS uhS 
	
� 
� � 
T Z

=

L� �
ρL

PP

hS hS ρL u
	
� 
� � 
T Z

=

=

L� �
ρL

�� uhS
ρHhS
	
� 
� � 
T Z

=

L� �
ρL

hS �� ur

	r

	
	
T Z

=

L� �
ρLhS u
	

	

T Z

=

L��r
ur

	

T Z

=

L

u

T Z

= u .

So it follows by uniqueness of the unit element that the maps σ ◦ρL ◦SL and
(SZ ⊗ ST ) ◦ ρL are equal. This means that the first diagram commutes.
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In order to prove the equality σ ◦ δZ,L ◦ ST = (SL ⊗ ST )δL,T , we define an
associative multiplication ? on Hom(T, Z ⊗ L) by

m ? n :=

T

λT

m PP n


	 
	

	
	
Z L

and show that both δZ,L ◦ ST and σ(SL ⊗ ST )δL,T are units for ?. We have

(δZ,L ◦ ST ) ? m =

T

λT

hS
PP m

PP


	 
	

	
	
Z L

=

T

λT

hS
m

PP PP


	
	

	
	
Z L

=

T
��

ρL

mhS
	
PP


	
	
Z L

=

T
��r
r r m

	
	
Z L

=

T

m

Z L

= m ,
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using that Z is an L-comodule algebra, and

(σ(SL ⊗ ST )δL,T ) ? m =

T

λT

��hS hS PP m


	 
	

	
	
Z L

=

T
��

ρL

m

�� PPhS hS
	

	

	
	
Z L

=

=

T
����
��
ρL

mhS hS
	

	

	
	
Z L

=

T
����
��hS r

	 mr

	
	
Z L

=

T
��r

mr
	
Z L

=

T

m

Z L

= m

by equation (3.1).
Commutativity of the remaining diagrams can be proved similarly by con-
sidering suitable multiplications. 2

Remark 3.1.9 It is straightforward to show that a total Hopf-Galois system
(L,H, T, Z) gives rise to a quantum torsor structure on both T and Z. The
structure maps are given by µT := (T ⊗SZ⊗T )λT and µZ := (Z⊗ST ⊗Z)λZ
respectively. Similar to the construction for cohomomorphism objects, the
Grunspan maps are given by θT := SZ ◦ ST resp. θZ := ST ◦ SZ . The fact
that they are morphisms of quantum torsors follows from the properties of
the generalized antipodes in Proposition 3.1.8.
Since ST and SZ have properties that generalize those of an antipode, the
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Grunspan map θ can be interpreted as a generalized square of the antipode.
This is consistent with the fact that the torsor arising from a Hopf algebra
in Example 1.4.2 has the Grunspan map S2.

Examples for bicomodule algebra systems can be found easily in “nature”. As
we have already mentioned, we have implicitly considered the bicomodule al-
gebra system (coend(ω), coend(ν), cohom(ν, ω) cohom(ω, ν)) in the previous
chapter.
To give a concrete example, we compute all the objects and structure maps
of the total Hopf-Galois system that arises from a faithfully flat Hopf-Galois
extension. For this, we recall from Section 1.2 the notation “h[1] ⊗ h[2]” for
the inverse of the Galois map.

Proposition 3.1.10 Let H be a k-Hopf algebra and let A be a right H-Galois
extension that is faithfully flat over k. This gives rise to a total Hopf-Galois
system (L,H,A, Z), whose structure maps are given as follows:

• L := (A⊗ A)coH is a subalgebra of A⊗ Aop and a Hopf algebra by

∆L(
∑

x⊗ yi) =
∑

xi(0) ⊗ xi(1)
[1] ⊗ xi(1)

[2] ⊗ yi

εL(
∑

xi ⊗ yi) =
∑

xiyi ∈ AcoH = k

SL(
∑

xi ⊗ yi) =
∑

yi(0) ⊗ yi(1)
[1]xiyi(1)

[2]

• A is a left L-comodule algebra by

δL,A(a) = a(0) ⊗ a(1)
[1] ⊗ a(1)

[2]

• Z := A−1 := (H ⊗ A)coH is a left H-subcomodule algebra of H ⊗ Aop
with the (H,L)-bicomodule algebra structure given by

δH,Z(
∑

hi ⊗ ai) =
∑

hi(1) ⊗ hi(2) ⊗ ai

δZ,L(
∑

hi ⊗ ai) = hi(1) ⊗ hi(2)
[1] ⊗ hi(2)

[2] ⊗ ai

• The algebra morphisms ρL and ρH are given by

ρL : L −→ A⊗ Z ,
∑

xi ⊗ yi 7→
∑

xi(0) ⊗ xi(1) ⊗ yi
ρH : H −→ Z ⊗ A , h 7→ h(1) ⊗ h(2)

[1] ⊗ h(2)
[2]
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• The generalized antipodes are given by

SA : A −→ Z , a 7→ a(0)SH(a(1))
[2]SH(a(2))⊗ SH(a(1))

[1]

SZ : Z −→ A ,
∑

hi ⊗ ai 7→
∑

εH(hi)ai

• If the antipode SH of H is invertible, then both generalized antipodes
SA and SZ are invertible with inverses

S−1
A : Z −→ A ,

∑
hi ⊗ ai 7→

∑
ε(hi)S

−2
H (ai(1))

[1]ai(0)S
−2
H (ai(1))

[2]

S−1
Z : A −→ Z , a 7→ S−1

H (a(1))⊗ a(0)

Proof. We know from [38] that L is a Hopf algebra and that A becomes an
L-H-bi-Galois extension via δL,A. There, it was also proved that there exists
a right L-comodule structure on A−1 =: Z turning it into an H-L-bi-Galois
extension. Moreover, the isomorphism of left L-comodule algebras

φ : A2H(H ⊗ A)coH −→ L ,
∑

ai ⊗
∑

hij ⊗ bij 7→
∑

ai ⊗ ε(hij)bij

from [38] is such that A2HZ is an L-L-bi-Galois extension isomorphic to the
trivial L-L-bi-Galois extension L. The inverse of φ is given by φ−1(

∑
ai ⊗

bi) =
∑
ai(0)⊗ai(1)⊗bi. So we can determine the right L-comodule structure

on A2HZ, which is induced by Z, via the commutative diagram

A2HZ L-
φ

A2HZ ⊗ L
?

δ

L⊗ L�
φ−1⊗L

?

∆L

as

δ(
∑

ai ⊗
∑

hij ⊗ bij) = (φ−1 ⊗ L) ◦∆L ◦ φ(
∑

ai ⊗
∑

hij ⊗ bij)

= (φ−1 ⊗ L)(
∑

ai(0)ε(hij)⊗ ai(1)
[1] ⊗ ai(1)

[2] ⊗ bij)

=
∑

ai(0)ε(hij)⊗ ai(1) ⊗ ai(2)
[1] ⊗ ai(2)

[2] ⊗ bij)

=
∑

ai ⊗ hij(1) ⊗ hij(2)
[1] ⊗ hij(2)

[2] ⊗ bij .

The last equality is deduced from the property of the cotensor product
A2HZ. So the comodule structure must be

δZ,L : Z −→ Z ⊗ L ,
∑

hi ⊗ ai 7→
∑

hi(1) ⊗ hi(2)
[1] ⊗ hi(2)

[2] ⊗ ai ,



68 Chapter 3. Antipodes in Hopf-Galois Systems

and it is straightforward to see that this map is well-defined, and makes Z
into an L-comodule algebra.

The map ρL : L −→ A⊗Z in the statement of the proposition is given by the
same formula as the inverse of φ : A2HZ −→ L. Thus, it follows that ρL is
an algebra morphism, and we moreover have ρL(L) ⊆ A2HZ.

In order to show that the map ρH is well-defined, we recall that for two right
H-modules V and W the space (V ⊗W )coH consists of those

∑
vi ⊗ wi ∈

V ⊗W that have the property∑
vi ⊗ wi(0) ⊗ wi(1) =

∑
vi(0) ⊗ wi ⊗ S(vi(1)) . (3.7)

Then we see that the map ρH is well defined, since we have for h ∈ H

(δH⊗A,H ⊗ id)ρH(h) = (δH⊗A,H ⊗ id)(h(1) ⊗ h(2)
[1] ⊗ h(2)

[2])

= h(1) ⊗ h(3)
[1]

(0)
⊗ h(2)h(3)

[1]
(1)
⊗ h(3)

[2]

= h(1) ⊗ h(4)
[1] ⊗ h(2)S(h(3))⊗ h(4)

[2]

= h(1) ⊗ h(2)
[1] ⊗ 1⊗ h(2)

[2]

by property (1.5), which implies ρH(H) ⊆ (H ⊗ A)coH ⊗ A = Z ⊗ A by
faithful flatness of A. It is clearly an algebra map, and we moreover have
ρH(H) ⊆ Z2LA, since

(Z ⊗ δL,A)ρH(h) = (Z ⊗ δL,A)(h(1) ⊗ h(2)
[1] ⊗ h(2)

[2])

= h(1) ⊗ h(2)
[1] ⊗ h(2)

[2]
(0)
⊗ h(2)

[2]
(1)

[1] ⊗ h(2)
[2]

(1)

[2]

= h(1) ⊗ h(2)
[1] ⊗ h(2)

[2] ⊗ h(3)
[1] ⊗ h(3)

[2]

= (δZ,L ⊗ A)(h(1) ⊗ h(2)
[1] ⊗ h(2)

[2])

= (δZ,L ⊗ A)ρH(h)

for all h ∈ H by (1.4).

It can now be easily be seen that (L,H,A, Z) satisfies the axioms of a bico-
module algebra system from Definition 3.1.1.

One can easily check that the generalized antipode maps SA and SZ are well-
defined. We finally show that they satisfy the axioms for a total Hopf-Galois
system in Definition 3.1.3: Axioms (A1) and (A3) follow from

∇A(A⊗ SZ)ρL(
∑

xi ⊗ yi) =
∑

xi(0)εH(xi(1))yi =
∑

xiyi =

= ηAεL(
∑

xi ⊗ yi)
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and
∇A(SZ ⊗ A)ρH(h) = εH(h(1))h(2)

[1]h(2)
[2] = ηAεH(h)

for
∑
xi ⊗ yi ∈ L and h ∈ H by (1.6). We use properties (1.4) and (1.7) for

axiom (A2)

∇Z(Z ⊗ SA)ρH(h) =

= h(1)h(2)
[2]

(0)
S(h(2)

[2]
(1)

)[2]S(h(2)
[2]

(2)
)⊗ S(h(2)

[2]
(1)

)[1]h(2)
[1] =

= h(1)h(2)
[2]S(h(3))

[2]S(h(4))⊗ S(h(3))
[1]h(2)

[1] =

= h(1)(h(2)S(h(3)))
[2]S(h(4))⊗ (h(2)S(h(3)))

[1] =

= h(1)S(h(2))⊗ 1 = ηZεH(h) .

The axiom (A4) follows by applying (3.7) and (1.10):

∇Z(SA ⊗ Z)ρL(
∑

xi ⊗ yi) =
∑

xi(0)S(xi(1))
[2]S(xi(2))xi(3) ⊗ yiS(xi(1))

[1]

=
∑

xi(0)S(xi(1))
[2] ⊗ yiS(xi(1))

[1]

=
∑

xiyi(1)
[2] ⊗ yi(0)yi(1)

[1]

=
∑

xiyi ⊗ 1

= ηZεL(
∑

xi ⊗ yi) .

2

3.2 Universal Hopf-Galois Systems

Takeuchi has shown in [51] that every bialgebra B can be mapped into a uni-
versal Hopf algebra H(B). This can be done such that each bialgebra mor-
phism from B to an arbitrary Hopf algebra H factors uniquely over H(B).
By the analogy between bialgebras and Hopf algebras on one side and bi-
comodule algebra systems and total Hopf-Galois systems on the other, we
can hope to obtain a similar result for bicomodule algebra systems. This
would answer the question whether one can “adjoin” antipodes and gen-
eralized antipodes to a bicomodule algebra system to obtain a total Hopf
algebra system from it. Such a result would be particularly interesting, since
we have seen in the previous chapter that bicomodule algebra systems ap-
pear naturally as quadruples (coend(ω), coend(ν), cohom(ω, ν), cohom(ν, ω))
for functors ν, ω : C −→M (without having to require that the category C be
rigid).
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We have seen in the previous section that a total Hopf-Galois system con-
tains just the data needed for encoding two “inverse” bi-Galois extensions
inside it. If we take a closer look at the six diagrams in Definition 3.1.1, we
realize that two particular diagrams one might hope for are missing. We can
in fact formulate two more compatibility constraints as follows:

Let (L,H, T, Z) be a bicomodule algebra system. Then we define the prop-
erties (B7) and (B8) as

L T ⊗ Z-ρL

T ⊗ Z
?

ρL

T ⊗H ⊗ Z-
δT,H⊗id

?

id⊗δH,Z(B7)

H Z ⊗ T-ρH

Z ⊗ T
?

ρH

Z ⊗ L⊗ T-
δZ,L⊗id

?

id⊗δL,T(B8)

Commutativity of diagram (B7) is clearly equivalent to the image of ρL lying
in the cotensor product of T and Z, i.e. ρL(L) ⊂ T2LZ. If (B8) holds, then
we have ρH(H) ⊂ Z2HT , and this implies that the equation

hZ (0) ⊗ hZ (1) ⊗ hT (−1) ⊗ hT (0) = hZ (0) ⊗ hZ (1) ⊗ hZ (2) ⊗ hT (3.8)

holds for all h ∈ H.

It follows from the coassociativity axiom of a coalgebra that the trivial Hopf-
Galois system (H,H,H,H) that arises from a Hopf algebra H satisfies the
properties (B7) and (B8).
The same holds for the bicomodule algebra system (coend(ω), coend(ν),
cohom(ω, ν), cohom(ν, ω)). This follows directly by construction of the re-
spective comultiplications in Proposition D.3.
Surprisingly, also the total Hopf-Galois system arising from a faithfully flat
Hopf-Galois extensions has this additional property, as we have seen in the
proof of Proposition 3.1.10.

These examples indicate that, although we do not include these properties in
the definition of a Hopf-Galois system, it still makes sense to consider them.
If we assume that a bicomodule algebra system satisfies these additional
properties, then we can show that it admits a universal Hopf-Galois system,
generalizing Takeuchi’s result for bialgebras. So then it is possible to “adjoin”
generalized antipodes as in the sense of the following theorem.

In this section, we work in the base category K-Vec.
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Theorem 3.2.1 Let (L,H, T, Z) be a bicomodule-algebra system that has the
additional properties (B7) and (B8). Then there exists a Hopf-Galois system
(H(L),H(H),H(T ),H(Z)) and a morphism of bicomodule-algebra systems

(ιL, ιH , ιT , ιZ) : (L,H, T, Z) −→ (H(L),H(H),H(T ),H(Z))

such that the following universal property holds:

For every Hopf-Galois system (U, V,X, Y ) and every morphism of bicomod-
ule-algebra systems (`, h, f, g) : (L,H, T, Z) −→ (U, V,X, Y ) there exists a
unique morphism of Hopf-Galois systems

(¯̀, h̄, f̄ , ḡ) : (H(L),H(H),H(T ),H(Z)) −→ (U, V,X, Y )

such that the following diagrams simultaneously commute:

L H(L)-ιL

U

h
@
@
@@R

h̄
�
�
��	

H H(H)-ιH

V

`
@
@
@@R

¯̀
�
�
��	

T H(T )-ιT

X

f
@
@
@@R

f̄
�
�
��	

Z H(Z)-ιZ

Y

g
@
@
@@R

ḡ
�
�

��	

The proof of this theorem requires the following two results from [33].

Lemma 3.2.2 ([33]) The category K-Alg of K-algebras has arbitrary co-
products.

Lemma 3.2.3 ([33]) The category K-Bialg of K-bialgebras has arbitrary co-
products.

We also need the following lemma:

Lemma 3.2.4 Let B and C be K-bialgebras. Then the category of (B,C)-
bicomodule algebras has arbitrary coproducts.

Proof. Let (Pi)i∈N be a family of (B,C)-bicomodule algebras and let P be
their coproduct in K-Alg with the injections ιi : Pi −→ P . By the universal
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property of the coproduct there exist algebra morphisms δB : P −→ B ⊗ P
and δC : P −→ P ⊗ C such that the diagrams

Pi P-
ιi

B ⊗ Pi
?

δi

B ⊗ P-
id⊗ιi

?

δB

Pi P-
ιi

Pi ⊗ C
?

δi

P ⊗ C-
id⊗ιi

?

δC

commute. Now it is straightforward to see that δB and δC define a bicomodule
algebra structure on P . 2

Proof of Theorem 3.2.1. We consider the following families of bialgebras
resp. comodule algebras taken from the given bicomodule-algebra system
(L,H, T, Z): For i ∈ N0 let

F2i := L F2i+1 := Lopcop

G2i := H G2i+1:= Hopcop

A2i := T A2i+1 := Zopcop

B2i := Z B2i+1 := T opcop

where (Lopcop, Hopcop, Zopcop, T opcop) is the opposite bicomodule-algebra sys-
tem described in Remark 3.1.4.
Let F :=

∐
i Fi be the coproduct of the family (Fi)i∈N0 with the injections

ιi : Fi −→ F . By Lemma 3.2.3, F is a bialgebra, and the same holds for
G :=

∐
iGi.

The following maps define an (F,G)-bicomodule algebra structure on each
of the algebras Ai, i ∈ N0:

A2i = T L⊗ T-δL,T
F ⊗ A2i

-ι2i⊗id

A2i = T T ⊗H-δT,H
A2i ⊗G-id⊗ι2i

A2i+1 = Zopcop Lopcop ⊗ Zopcop-σ◦δZ,L
F ⊗ A2i+1

-ι2i+1⊗id

A2i+1 = Zopcop Zopcop ⊗Hopcop-σ◦δH,Z
A2i+1 ⊗G-id⊗ι2i+1

Hence, when defining A :=
∐

iAi in the category of K-algebras, we get by
Lemma 3.2.4 that A is an (F,G)-bicomodule algebra. In the same way we
obtain a (G,F )-bicomodule algebra structure on B :=

∐
iBi.
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Proposition 3.2.5 (F,G,A,B) is a bicomodule-algebra system.

Proof. The family of algebra morphisms

ρF2i
: F2i = L T ⊗ Z = A2i ⊗B2i

-ρL

ρF2i+1
: F2i+1 = Lopcop Zopcop ⊗ T opcop = A2i+1 ⊗B2i+1-σ◦ρL

for all i ∈ N0, gives rise to an an algebra morphism ρF : F −→ A ⊗ B such
that the diagram

Fi F-
ιi

Ai ⊗Bi

?

ρFi

A⊗B-
ιi⊗ιi

?

ρF

commutes. Similarly, we construct an algebra morphism ρG : G −→ B ⊗ A.
In order to show that ρF and ρG together with the previously constructed
structure morphisms make (F,G,A,B) into a bicomodule-algebra system, it
suffices to show that this holds for each component (Fi, Gi, Ai, Bi). But for
even indices, this is just the given bicomodule-algebra system, and for odd
indices the opposite bicomodule-algebra system from Remark 3.1.4. 2

In order to construct antipodes and generalized antipodes, we define the
following four maps through the universal properties of the respective co-
products:

Fi F-
ιi

(F opcop
i )opcop = F opcop

i+1

?

id

F opcop-
ιi+1

?

S′F

(3.9)

Gi G-
ιi

(Gopcop
i )opcop = Gopcop

i+1

?

id

Gopcop-
ιi+1

?

S′G

(3.10)
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Ai A-
ιi

(Aopcopi )opcop = Bopcop
i+1

?

id

Bopcop-
ιi+1

?

S′A

(3.11)

Bi B-
ιi

(Bopcop
i )opcop = Aopcopi+1

?

id

Aopcop-
ιi+1

?

S′B

(3.12)

Let IF be the two-sided ideal of F generated by the set

{(S ′F ∗ id−ηε)(xi) , (id ∗S ′F − ηε)(xi) | xi ∈ ιi(Fi), i ∈ N0} ,

where ∗ denotes the convolution in Hom(F, F ). It is shown in [33] that IF is
a biideal of F . In the same way we get a biideal IG of G. Then the quotient
bialgebras H(L) := F/IF and H(H) := G/IG become Hopf algebras with
antipodes SH(L) and SH(H) which are given as the obvious factorizations of
S ′F resp. S ′G.

It is clear that A becomes an (H(L),H(H))-bicomodule algebra via

δH(L),A : A F ⊗ A-δF,A H(L)⊗ A-π⊗id

and

δA,H(H) : A A⊗G-δA,G
A⊗H(H) ,-id⊗π

where we denote both residue class morphisms F −→ H(L) and G −→ H(H)
as π. In the same way, B becomes an (H(H),H(L))-bicomodule algebra.

Proposition 3.2.6 Let IA be the two-sided ideal in A generated by the set{
(∇A(id⊗S ′B)ρF − ηAεF )(xi) , (∇A(S ′B ⊗ id)ρG − ηAεG)(yi) |

| xi ∈ ιi(Fi), yi ∈ ιi(Gi), i ∈ N0

}
.

Then δH(L),A(IA) ⊆ H(L) ⊗ IA and δA,H(H)(IA) ⊆ IA ⊗H(H), which means
that IA is a sub-bicomodule of A.
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Proof. The following two diagrams commute by the definition of the mor-
phisms S ′ above:

Bi B-
ιi

Aopcopi+1

?

id

Aopcop-
ιi+1

?

S′B

F opcop
i+1 ⊗ Aopcopi+1

?

δi+1

F opcop ⊗ Aopcop-
ιi+1⊗ιi+1

?

δF,A

Bi B-
ιi

Bi ⊗ Fi
?

δi

B ⊗ F-
ιi

?

δB,F

Aopcopi+1 ⊗ F
opcop
i+1

?

id⊗ id

Aopcop ⊗ F opcop-
ιi+1⊗ιi+1

?

SB⊗SF

Since the maps on the left hand sides are equal up to a twist σ, it follows by
the universal property of the coproduct B that

δF,A ◦ S ′B = σ(S ′B ⊗ S ′F )δB,F .

So we get

(δF,A ⊗ δF,A)(id⊗S ′B)ρF ◦ ιi(x) =

= (δF,A ⊗ σ(S ′B ⊗ S ′F )δB,F )(ιi ⊗ ιi)ρFi(x) =

= (id⊗ id⊗σ(S ′B ⊗ S ′F ))(δF,A ⊗ δB,F )(ιi(x
Ai)⊗ ιi(xBi)) =

= (id⊗ id⊗σ(S ′B ⊗ S ′F ))(ιi(x
Ai)(−1) ⊗ ιi(xAi)(0) ⊗ ιi(xBi)(0) ⊗ ιi(xBi)(1)) =

= (id⊗ id⊗σ(S ′B ⊗ S ′F ))(ιi(x
Ai

(−1))⊗ ιi(xAi (0))⊗ ιi(xBi (0))⊗ ιi(xBi (1))) =

= (id⊗ id⊗σ(S ′B ⊗ S ′F ))(ιi(x(1))⊗ ιi(x(2)
Ai)⊗ ιi(x(2)

Bi)⊗ ιi(x(3)))

for x ∈ Fi, applying the equation (3.1) for h ∈ L

hT (−1) ⊗ hT (0) ⊗ hZ (0) ⊗ hZ (1) = h(1) ⊗ h(2)
T ⊗ h(2)

Z ⊗ h(3) .
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This yields for x ∈ Fi

δF,A(∇A(id⊗S ′B)ρF )ιi(x) =

= (∇F ⊗∇A)(id⊗σ ⊗ id)(δF,A ⊗ δF,A)(id⊗S ′B)ρF ◦ ιi(x) =

= (∇F ⊗∇A)(id⊗σ ⊗ id)(id⊗ id⊗σ(S ′B ⊗ S ′F ))

(ιi(x(1))⊗ ιi(x(2)
Ai)⊗ ιi(x(2)

Bi)⊗ ιi(x(3))) =

= ιi(x(1))S
′
F (ιi(x(3)))⊗ ιi(x(2)

Ai)S ′B(ιi(x(2)
Bi)) =

= ιi(x(1))S
′
F ιi(x(3))⊗ (∇A(id⊗S ′B)ρF )ιi(x(2)) ,

which implies

δF,A(∇A(id⊗S ′B)ρF − ηAεF )ιi(x) =

= ιi(x(1))S
′
F ιi(x(3))⊗ (∇A(id⊗S ′B)ρF )ιi(x(2))− δF,AηAεF ιi(x) =

= ιi(x(1))S
′
F ιi(x(3))⊗ (∇A(id⊗S ′B)ρF − ηAεF )ιi(x(2))+

+ ιi(x(1))S
′
F ιi(x(3))⊗ ηAεF ιi(x(2))− δF,AηAεF ιi(x) =

= ιi(x(1))S
′
F ιi(x(3))⊗ (∇A(id⊗S ′B)ρF − ηAεF )ιi(x(2))+

+ ιi(x(1))S
′
F ιi(x(2))⊗ ηA(1)− ηF εF ιi(x)⊗ ηA(1) =

= ιi(x(1))S
′
F ιi(x(3))⊗ (∇A(id⊗S ′B)ρF − ηAεF )ιi(x(2))+

+ (id ∗S ′F − ηF εF )ιi(x)⊗ ηA(1)

⊆ F ⊗ IA + IF ⊗ A .

So we obtain that

δH(L),A(∇A(id⊗S ′B)ρF − ηAεF )ιi(x) ⊆ H(L)⊗ IA .

To prove that δH(L),A maps also elements of the form (∇A(S ′B ⊗ id)ρG −
ηAεG)(yi) to H(L)⊗ IA, we first calculate for y ∈ Gi

(δF,A ⊗ δF,A)(S ′B ⊗ id)ρG ◦ ιi(y) =

= (σ(S ′B ⊗ S ′F )⊗ id⊗ id)(δB,F ⊗ δF,A)ρGi(y) =

= (σ(S ′B ⊗ S ′F )⊗ id⊗ id)(ιi(y
Bi)(0) ⊗ ιi(yBi)(1) ⊗ ιi(yAi)(−1) ⊗ ιi(yAi)(0)) =

= (σ(S ′B ⊗ S ′F )⊗ id⊗ id)(ιi(y
Bi)(0) ⊗ ιi(yBi)(1) ⊗ ιi(yBi)(2) ⊗ ιi(yAi)) ,

where the last equality is deduced from (3.8) and hence requires the addi-
tional property (B8) of the bicomodule-algebra system (H,L, T, Z). With
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this formula we get

δF,A(∇A(S ′B ⊗ id)ρG)ιi(y) =

= (∇F ⊗∇A)(id⊗σ ⊗ id)(δF,A ⊗ δF,A)(S ′B ⊗ id)ρGιi(y) =

= (∇F ⊗∇A)(id⊗σ ⊗ id)(σ(S ′B ⊗ S ′F )⊗ id⊗ id)

(ιi(y
Bi)(0) ⊗ ιi(yBi)(1) ⊗ ιi(yBi)(2) ⊗ ιi(yAi)) =

= S ′F (ιi(y
Bi)(1))ιi(y

Bi)(2) ⊗ S ′B(ιi(y
Bi)(0))ιi(y

Ai) =

= (S ′F ∗ id)(ιi(y
Bi)(1))⊗ S ′B(ιi(y

Bi)(0))ιi(y
Ai) .

Finally, we have

δF,A(∇A(S ′B ⊗ id)ρG − ηAεG)ιi(y) =

= (S ′F ∗ id)(ιi(y
Bi)(1))⊗ S ′B(ιi(y

Bi)(0))ιi(y
Ai)− δF,A(ηAεGιi(y)) =

= (S ′F ∗ id−ηF εF )(ιi(y
Bi)(1))⊗ S ′B(ιi(y

Bi)(0))ιi(y
Ai)+

+ ηF εF ιi(y
Bi)(1) ⊗ S ′B(ιi(y

Bi)(0))ιi(y
Ai)− δF,A(ηAεGιi(y)) =

= (S ′F ∗ id−ηF εF )(ιi(y
Bi)(1))⊗ S ′B(ιi(y

Bi)(0))ιi(y
Ai)+

+ ηF (1)⊗ S ′B(ιi(y
Bi))ιi(y

Ai)− ηF (1)⊗ ηAεGιi(y) =

= (S ′F ∗ id−ηF εF )(ιi(y
Bi)(1))⊗ S ′B(ιi(y

Bi)(0))ιi(y
Ai)+

+ ηF (1)⊗ (∇A(S ′B ⊗ id)ρG − ηAεG)ιi(y)

⊆ IF ⊗ A+ F ⊗ IA ,

and thus

δH(L),A(∇A(S ′B ⊗ id)ρG − ηAεG)ιi(y) ⊆ H(L)⊗ IA .

The proof for the right comodule structure δA,H(H) is similar. 2

Of course, the statement in Proposition 3.2.6 holds also for the analogously
defined biideal IB of B. For this we need the property (B7).

Now we can define the quotient algebras H(T ) := A/IA and H(Z) := B/IB,
and because of IA ⊆ Ke((π⊗π)δF,A) and IA ⊆ Ke((π⊗π)δA,G), which we just
proved, we get the following bicomodule algebra structure maps for H(T ),

A H(T ) = A/IA-π

F ⊗ A
?

δF,A

H(L)⊗H(T )
?

π⊗π

δH(L),H(T )

�
�
�

�
�
�
�
�	

A H(T ) = A/IA-π

A⊗G
?

δA,G

H(T )⊗H(H)
?

π⊗π

δH(T ),H(H)

�
�
�
�

�
�
�
�	
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and for H(Z) respectively.
It is clear that (H(L),H(H),H(T ),H(Z)) is a bicomodule algebra system.

We show that S ′A can be factored over H(T ) as

A H(T ) = A/IA-π

Bopcop
?

S′A

H(Z)opcop = (B/IB)opcop
?

π

SH(T )

�
�

�
�

�
�

�
�	

i.e. that IA ⊆ Ke(πS ′A). Since Ke(π) = IB, we just have to show that
S ′A(IA) ⊆ IB. Let x ∈ Fi. Then we have

S ′A(∇A(id⊗S ′B)ρF )ιi(x) = ∇Bσ(S ′A ⊗ S ′AS ′B)(ιi ⊗ ιi)ρFi(x)

= ∇Bσ(id⊗S ′A)(ιi+1 ⊗ ιi+1)ρFi(x)

= ∇B(S ′A ⊗ id)(ιi+1 ⊗ ιi+1)σρFi(x)

= ∇B(S ′A ⊗ id)(ιi+1 ⊗ ιi+1)ρFi+1
(x)

= ∇B(S ′A ⊗ id)ρF ιi+1(x)

and
S ′A(ηAεF ιi(x)) = S ′A(1)εi(x) = ηB(1)εi+1(x) = ηBεF ιi+1(x) ,

which implies

S ′A(∇A(id⊗S ′B)ρF − ηAεF )ιi(x) = (∇B(S ′A ⊗ id)ρF − ηBεF )ιi+1(x) ⊆ IB .

Together with similar computations we obtain the desired factorization.

Proposition 3.2.7 The morphism SH(T ) and the analogously constructed
morphism SH(Z) : H(Z) −→ H(T ) are generalized antipodes for the bicomo-
dule-algebra system (H(L),H(H),H(T ),H(Z)).

Proof. By a generalization of [23], Proposition III.3.6, it obviously suffices
to test the antipode property on algebra generators. For instance, we get for
x ∈ Fi

∇H(T )(id⊗SH(Z))ρH(L)πιi(x) = ∇H(T )(π ⊗ SH(Z)π)ρF ιi(x)

= ∇H(T )(π ⊗ π)(id⊗S ′B)ρF ιi(x)

= π∇A(id⊗S ′B)ρF ιi(x)

= πηAεF ιi(x)

= ηH(T )εH(L)πιi(x) ,

and the other equalities can be shown similarly. 2
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So far, we have constructed a total Hopf-Galois system

(H(L),H(H),H(T ),H(Z))

such that setting (ιF , ιG, ιA, ιB) := (πι0, πι0, πι0, πι0), we obtain a morphism
of bicomodule-algebra systems

(ιF , ιG, ιA, ιB) : (L,H, T, Z) −→ (H(L),H(H),H(T ),H(Z)) .

It remains to be shown that the universal property is satisfied.

So let (U, V,X, Y ) be a total Hopf-Galois system and let

(`, h, f, g) : (L,H, T, Z) −→ (U, V,X, Y )

be a morphism of bicomodule-algebra systems. We define recursively the
following families of bialgebra resp. algebra morphisms for all i ∈ N :

`0 := ` `i+1 := SU`i

h0 := h hi+1 := SV hi

f0 : A0 = T X-
f

g0 : B0 = Z Y-
g

f1 : A1 = Zopcop Y opcop-g X-
SY

g1 : B1 = T opcop Xopcop-f Y-
SX

fi+1 := SY gi gi+1 := SXfi

This means in fact that we have morphisms of bicomodule-algebra systems
(`i, hi, fi, gi) : (Fi, Gi, Ai, Bi) −→ (U, V,X, Y ) for each i ∈ N0. The reason
for this is that (SU , SV , SX , SY ) is a morphism of Hopf-Galois systems by
Proposition 3.1.8 and thus each (`i, hi, fi, gi) is a composition of bicomodule-
algebra morphisms.

By the universal property of the coproduct, the above families define bialge-
bra morphisms `′ : F −→ U with `′ιi = `i, h

′ : G −→ V with h′ιi = hi and
algebra morphisms f ′ : A −→ X with f ′ιi = fi, g

′ : B −→ Y with g′ιi = gi for
all i ∈ N0.
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Now we see that IA ⊆ Ke(f ′), since we get for x ∈ Fi

f ′(∇A(id⊗S ′B)ρF )ιi(x) = f ′(∇A(id⊗S ′B)(ιi ⊗ ιi)ρFi(x))

= f ′∇A(ιi ⊗ S ′Bιi)ρFi(x)

= f ′∇A(ιi ⊗ ιi+1)ρFi(x)

= ∇X(f ′ιi ⊗ f ′ιi+1)ρFi(x)

= ∇X(fi ⊗ fi+1)ρFi(x)

= ∇X(fi ⊗ SY gi)ρFi(x)

= ∇X(id⊗SY )(fi ⊗ gi)ρFi(x)

= ∇X(id⊗SY )ρU`i(x)

= ηXεU`i(x)

= ηXεLi(x)

= f ′(ηAεLιi(x))

using the properties of a morphism of bicomodule algebra systems. By a
similar calculation we have the same result for the other part of IA .

Hence, f ′ factors over H(T ), i.e. there exists a unique algebra morphism
f̄ : H(T ) −→ X such that the diagram

Ai A-
ιi H(T )-π

X

fi

@
@
@
@
@@R ?

f ′ f̄

�
�
�

�
��	

commutes for for all i ∈ N0, and so in particular the diagram

T H(T )-ι0π

X

f
@
@@R

f̄
�
��	

commutes. As before, we get the corresponding results for the other three
morphisms, such that there exists a map

(¯̀, h̄, f̄ , ḡ) : (H(L),H(H),H(T ),H(Z)) −→ (U, V,X, Z) ,

that makes the four diagrams in the statement of the proposition commute.
We still have to verify that (¯̀, h̄, f̄ , ḡ) is in fact a morphism of Hopf-Galois
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systems. For the axiom (M1) we consider the diagram

F U
-`′

H(L)-
π

-
¯̀

A⊗B
?

ρF

H(T )⊗H(Z)
?

ρH(L)

-π⊗π -f̄⊗ḡ
-

f ′⊗g′
X ⊗ Y
?

ρU

that commutes with the possible exception of the right hand square. But π
is surjective and so the last square must commute, too. The axiom (M3) can
be deduced in the same way from

A X
-f ′

H(T )-
π

-
f̄

F ⊗ A
?

δF,A

H(L)⊗H(T )
?

δH(L),H(T )

-π⊗π -
¯̀⊗f̄
-

`′⊗f ′
U ⊗X
?

δU,X

as well as the other diagrams.

Finally, the uniqueness of the morphism (¯̀, h̄, f̄ , ḡ) follows from the fact, that
¯̀, h̄, f̄ and ḡ are already uniquely determined as morphisms of algebras by
the universal property of the coproduct in K-Alg. 2
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Chapter 4

Bialgebroids and Hopf
Algebroids for B-Torsors

4.1 Bialgebroids and ×A-Bialgebras

The following is a well-known fact in the theory of Hopf algebras: The cat-
egory of modules over a k-algebra H is monoidal with the tensor product
of the underlying category of k-modules, if and only if H has a bialgebra
structure. This means that the forgetful functor HM−→ kM is monoidal.

Let A be a noncommutative ring. For two A-bimodules M,N ∈ AMA, one
can consider the tensor product M⊗AN over A. Then, as was shown in [39],
an algebra whose modules form a monoidal category with the tensor product
⊗A has the structure of a ×A-bialgebra. The definition of a ×A-bialgebra,
and that of the equivalent notion of A-bialgebroid, is based on a new tensor
product “×A”, and generalizes the notion of a bialgebra over a commutative
ring k.

The notion of ×A-bialgebra was introduced by Sweedler [50], and later gen-
eralized by Takeuchi [52]. Motivated by studies of Poisson groupoids, the
same objects were introduced again under the name of bialgebroids by Lu in
[26]. There exists a side-reversed version to these bialgebroids, called right
bialgebroid in [22].
In [26] Lu also defined an antipode for bialgebroids, which was supposed to
generalize antipodes for Hopf algebras. This definition requires the existence
resp. choice of a section for the canonical projection of the tensor product
over k to the tensor product over A. To avoid this quite technical and un-
natural approach, several other authors have given other definitions of Hopf
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algebroids resp. ×A-Hopf algebras based on categorical properties. One of
them is Schauenburg’s concept of ×A-Hopf algebra [43].

We are going to review the definitions of ×A-bialgebra and A-bialgebroid.
Both left and right bialgebroids arise naturally with the generalized versions
of quantum torsors that we are going study in the next section. We give a
definition of×A-bialgebras. These are right bialgebroids in the terminology of
×A-bialgebras. This translation of axioms allows us then to give a definition
of ×A-Hopf algebras based on categorical properties analogous to those of
Schauenburg’s ×A-Hopf algebras in [43]. We show that ×A-bialgebras that
admit a Hopf-Galois extension are ×A-Hopf algebras.

We follow Takeuchi’s and Schauenburg’s descriptions of ×A-bialgebras in [52]
resp. [43]:

Let A be a k-algebra. We denote the opposite algebra by Ā := Aop and
let A 3 a 7→ ā ∈ Ā be the obvious anti-isomorphism of k-algebras. We
abbreviate Ae := A ⊗ Ā for the enveloping algebra, where A and Ā are
considered as subalgebras in the obvious way.
Let M,N ∈ AeMAe . Using a notation due to MacLane, we let∫

a
āM ⊗ aN

be the quotient submodule

M ⊗N/ < ām⊗ n−m⊗ an | a ∈ A,m ∈M,n ∈ N >,

and ∫ a

Mā ⊗Na

be the submodule of M ⊗N consisting of

{
∑

mi ⊗ ni ⊂M ⊗N |
∑

miā⊗ ni =
∑

mi ⊗ nia ∀ a ∈ A} .

For two left Ae-modules M,N we set

M �N :=

∫
a
āM ⊗ aN .

This is again a left Ae-module with the left Ā-module structure induced by
the structure of N , and the left A-module structure induced by the structure
of M . It is easy to see that the category (AeM, �) is monoidal and naturally
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isomorphic to the category (AMA,⊗A).

For two Ae-bimodules M,N we set

M ×A N :=

∫ b ∫
a
āMb̄ ⊗ aNb ,

which is the submodule of M �N consisting of

{
∑

mi ⊗ ni ⊂M �N |
∑

miā⊗ ni =
∑

mi ⊗ nia ∀ a ∈ A} .

It is again an Ae-bimodule with A acting on the left and Ā acting on the
right tensor factor as (a ⊗ b̄)(m ⊗ n)(c ⊗ d̄) := amc ⊗ b̄nd̄ for a, b, c, d ∈ A
and m⊗ n ∈M ×A N . Thus, ×A defines a product on the category AeMAe ,
which, however, must neither be associative nor unitary.

A triple ×A-product for M,N,P ∈ AeMAe is defined as

M ×A P ×A N :=

∫ c,d ∫
a,b

āMc̄ ⊗ a,b̄Pc,d̄ ⊗ bNd .

There exist associativity maps

α : (M ×A N)×A P −→M ×A N ×A P
α′ : M ×A (N ×A P ) −→M ×A N ×A P

that are both given by m ⊗ n ⊗ p 7→ m ⊗ n ⊗ p on elements. They are
Ae-bimodule maps, but need not be isomorphisms.

The endomorphism ring End(A) inherits the Ae-bimodule structure from A.
For every M ∈ AeMAe , the following are Ae-bimodule maps:

ϑ : M ×A End(A) −→M , m⊗ f 7→ f(1)m

ϑ′ : End(A)×AM −→M , f ⊗m 7→ f(1)m

Now we are ready to introduce the notion of ×A-coalgebra.
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Definition 4.1.1 A ×A-coalgebra is an Ae-bimodule L together with a co-
multiplication ∆ : L −→ L×AL and a counit ε : L −→ End(A), both of which
are Ae-bimodule maps, such that the following diagrams commute:

L L×A L-∆

L×A L
?

∆

(L×A L)×A L
?

∆×AL

L×A L×A L-
α

L×A (L×A L)
?

L×A∆

?

α′

L L×A L-∆

L
?

id

L×A End(A)
?

L×Aε

�
ϑ

L L×A L-∆

L
?

id

End(A)×A L
?

ε×AL

�
ϑ′

We use generalized Sweedler notation to denote the comultiplication map of
a ×A-bialgebra L by ∆(`) =: `(1) ⊗ `(2) ∈ L ×A L. Note that one has to be
very careful when applying the coassociativity axiom on this notation, since
both α and α′ need not be isomorphisms (see [43] for details).

An Ae-ring (or an algebra over Ae) is defined as an algebra L equipped with
an algebra map iL : Ae −→ L. A map of Ae-rings is an algebra map that
commutes with the respective maps from Ae.
An Ae-ring L becomes an Ae-bimodule in a natural way, namely by left
and right multiplication with the image of iL. For two Ae-rings L and K,
L×AK is an algebra with componentwise multiplication and an Ae-ring via
iL×AK : A⊗ Ā −→ L×A K , a⊗ b̄ 7→ iL(a)⊗ iK(b̄).

Definition 4.1.2 A ×A-bialgebra L is an Ae-ring that has the structure of
a ×A-coalgebra such that the comultiplication ∆ and the counit ε are maps
of Ae-rings.

The category of left modules over a ×A-bialgebra L is a monoidal category:
The tensor product M �N of two left L-modules M,N ∈ LM becomes a left
L-module with the diagonal module structure

`� (m⊗ n) = `(1) �m⊗ `(2) � n ,
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and the unit object Ae becomes an L-module via the Ae-bimodule map
ε : L −→ End(A). This means that the underlying functor LM −→ AeM
is monoidal.

Remark 4.1.3 Let L be a ×A-bialgebra with the Ae-ring structure iL : Ae =
A ⊗ Ā −→ L. Then L can be naturally considered as an Āe = Ā ⊗ A-ring
via the algebra morphism jL : Ā ⊗ A −→ L , jL(ā ⊗ b) := iL(b ⊗ ā). The
resulting A-resp. Ā-module structures on L are such that they correspond to
the original Ā-resp. A-module structures given by iL. This means that we
have

L×Ā L =

∫ b ∫
a
aLb ⊗ āLb̄ .

Given two L-modules M,N ∈ LM, the symmetry M ⊗N −→ N ⊗M inMk

induces an invertible map

τM,N : M �N −→
∫
a
aN ⊗ āM .

Hence, composing the comultiplication map ∆ : L −→ L×A L ⊂ L � L , ` 7→
`(1) ⊗ `(2) with τL,L is well-defined and yields a map

∆cop := τL,L ◦∆ : L −→
∫ b ∫

a
aLb ⊗ āLb̄ = L×Ā L .

We denote by εcop : L −→ End(Ā) the obvious Āe-ring map induced by the
counit ε : L −→ End(A). Now it is straightforward to see that the Āe-ring L
together with the maps ∆cop and εcop satisfies the axioms of a ×Ā-bialgebra.
We call this ×Ā-bialgebra the coopposite bialgebra of L, and denote it by
Lcop.
The category LcopM of left Lcop-modules is monoidal with the tensor product
of the underlying category ĀMĀ given by

M �̄N :=

∫
a
aM ⊗ āN

for M,N ∈ LcopM. The Lcop-module structure on M �̄N is given by `� (m⊗
n) = `(2) �m⊗ `(1) � n.

Hopf algebras over a commutative ring k can be characterized through the
following property: A k-bialgebra H is a Hopf algebra if and only if the cate-
gory of its finitely generated projective comodules is rigid [56]. Schauenburg
has given a definition of ×A-Hopf algebra in [43] that demands ×A-Hopf al-
gebras to do something similar for their categories of modules. It is shown
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in [43] that a ×A-bialgebra L satisfies the property in the following defini-
tion if and only if the underlying functor LM−→ AeM preserves right inner
hom-functors.

Definition 4.1.4 A ×A-Hopf algebra L is a ×A-bialgebra such that the map

β : L⊗Ā L −→ L � L , `⊗m 7→ `(1) ⊗ `(2)m

is a bijection.

We now state the definition of Lu’s bialgebroid [26], which we shall call left
bialgebroid. Actually, the axioms in Lu’s original definition look somewhat
different but were proved to be equivalent to those in the following definition
by Xu in [59], see also [7].

Definition 4.1.5 A left bialgebroid H over R consists of:

• k-algebras H and R, called the total resp. base ring

• algebra morphisms s : R −→ H , t : Rop −→ H, called the source resp.
target map such that

s(r)t(r′) = t(r′)s(r)

for all r, r′ ∈ R, giving rise to an (R,R)-bimodule structure on H by

r · x · r′ := s(r)t(r′)x

• (R,R)-bimodule maps ∆ : H −→ H ⊗R H and ε : H −→ R such that
(H,∆, ε) is an R-coring, that is a comonoid in RMR.

• the following identities for r ∈ R and x, y ∈ H:

1) ∆(x)(1⊗ s(r)) = ∆(x)(t(r)⊗ 1)

2) ∆(xy) = ∆(x)∆(y)

3) ∆(1) = 1⊗ 1

4) ε(xs(ε(y))) = ε(xy) = ε(xt(ε(y)))

5) ε(1) = 1R

We note that H ⊗R H does not necessarily possess a well-defined algebra
structure. Thus, the properties 1) and 2) can not be expressed by demanding
that ∆ be an algebra map.

It is shown in [7] that the notions of ×R-bialgebra and left R-bialgebroid are
equivalent. In the above definition, one can define an alternative bimodule
structure on H by multiplying with the source and target maps on the right.
This leads to the notion of right bialgebroid as given in [22]:
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Definition 4.1.6 A right bialgebroid H over R consists of:

• k-algebras H and R, called the total resp. base ring

• algebra morphisms s : R −→ H , t : Rop −→ H, called the source
resp. target map such that

s(r)t(r′) = t(r′)s(r)

for all r, r′ ∈ R, giving rise to an (R,R)-bimodule structure on H by

r · x · r′ := xs(r′)t(r)

• (R,R)-bimodule maps ∆ : H −→ H ⊗R H and ε : H −→ R such that
(H,∆, ε) is an R-coring.

• the following identities for r ∈ R and x, y ∈ H:

1) (s(r)⊗ 1)∆(x) = (1⊗ t(r))∆(x)

2) ∆(xy) = ∆(x)∆(y)

3) ∆(1) = 1⊗ 1

4) ε(s(ε(x))y) = ε(xy) = ε(t(ε(x))y)

5) ε(1) = 1R

Remark 4.1.7 Given a left bialgebroid (H,R, s, t,∆, ε) with total ring H,
the opposite algebra Hop becomes a right bialgebroid over R with the struc-
ture maps sop := t : R −→ Hop, top := s : Rop −→ Hop and ∆op := ∆, εop := ε.
This relation between left and right bialgebroids can be understood by pass-
ing from left H-modules to right Hop-modules and requiring that they form
a monoidal category with the underlying functor to the category of R-bi-
modules.

Definition 4.1.8 Let H and K be two bialgebroids over the base ring R.
An algebra morphism f : H −→ K is called a morphism of bialgebroids if it
is an R-bimodule morphism and compatible with both comonoid structures
such that

∆K ◦ f = (f ⊗R f) ◦∆H , εK ◦ f = εH

Lu has given the following definition of Hopf algebroid in [26]. It is not
equivalent to Schauenburg’s definition of a ×A-Hopf algebra.
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Definition 4.1.9 A left bialgebroid H over R is called a Hopf algebroid if
there exists an algebra anti-automorphism ς : H −→ H, called the antipode,
such that

• ς ◦ t = s

• ∇(ς ⊗ id)∆ = t ◦ ε ◦ ς

• there exists a linear section γ : H ⊗R H −→ H ⊗ H for the natural
projection such that ∇(id⊗ς)γ∆ = s ◦ ε.

Note that writing down the second property is well-defined because of the
first one. The section γ is really needed for the third property, since an
expression like ∇(id⊗ς)∆ might not be well-defined.

Some interesting examples of Hopf algebroids are discussed in [26], along
with a construction method for Hopf algebroids that we will study later on.
The following example from [26] is called the trivial Hopf algebroid:

Example 4.1.10 Let A be a k-algebra. Then H := A ⊗ Aop is a left bial-
gebroid over A with the source map s : A −→ A ⊗ Aop , a 7→ a ⊗ 1 and the
target map t : A −→ A ⊗ Aop , a 7→ 1 ⊗ a. The A-ring structure on H is
given by ∆ : A ⊗ Aop −→ A ⊗ Aop ⊗A A ⊗ Aop , a ⊗ b 7→ a ⊗ 1 ⊗ 1 ⊗ b and
ε : A⊗ Aop −→ A , a⊗ b 7→ ab.
The bialgebroid H becomes a Hopf algebroid with the antipode ς : H
−→ H , a ⊗ b 7→ b ⊗ a, where the section γ : H ⊗A H ∼= A ⊗ Aop ⊗ Aop

−→ H ⊗H = A⊗Aop ⊗A⊗Aop can be chosen as a⊗ b⊗ c 7→ a⊗ b⊗ 1⊗ c.

Lu’s definition of Hopf algebroid has one disadvantage. In cases where the
structure maps of the bialgebroid do not have such a simple form as in the
previous example, it can be quite difficult to construct a suitable section.
Nevertheless, Lu’s Hopf algebroids will turn out to be useful for us in the
next section. They arise naturally with B-torsors and provide a generalized
Grunspan map for them.

Lu has shown in [26] that an antipode for a left Hopf algebroid H over R
always comes along with a particular endomorphism of R:

Proposition 4.1.11 ([26]) Let H be a Hopf algebroid over R. There exists
an algebra morphism ϑ : R −→ R such that ς ◦ s = t ◦ ϑ.

Proof. Since ∆ is an (R,R)-bimodule morphism, we have ∆(s(r)) = r ·
∆(1) = s(r) ⊗ 1 for r ∈ R. Applying the identity ∇(id⊗ς)∆ = t ◦ ε ◦ ς to
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s(r) yields t ◦ ε ◦ ς ◦ s(r) = ∇(ς ⊗ id)(s(r)⊗ 1) = ς ◦ s(r). Now we see that
the map ϑ := ε ◦ ς ◦ s satisfies the above property. 2

It is shown in [7] that the notion of ×A-bialgebra is equivalent to the notion
of left bialgebroid. So it is clear that the properties of a right bialgebroid
can be expressed by a structure that is modelled analogously to that of a
×A-bialgebra. Later we will encounter these right versions of ×A-bialgebras,
arising naturally from torsor structures. Therefore, we have to work out their
structure explicitly. It is based on a new product “×A” that we define as
follows:

We denote by Ae := Ā⊗A the opposite algebra of Ae and define for M,N ∈
AeMAe

M M N :=

∫
a

Ma ⊗Nā

and

M ×A N :=

∫ b ∫
a
bMa ⊗ b̄Nā .

For M,N ∈ MAe , M M N is again a right Ae-module by letting Ā act on
the first tensorand and A on the second. It is obvious that the category
(MAe ,M) is monoidal and isomorphic to the category (AMA,⊗A). Since we
just reversed sides and replaced a’s by ā’s, it is clear that the product ×A has
properties analogous to those we have listed above for ×A. We denote the
obvious associativity morphisms by α resp. α′. In particular, the product
H ×A K of two Ae-rings H and K is again an algebra by componentwise
multiplication and an Ae-ring by iH×AK : Ā ⊗ A −→ H ×A K , ā ⊗ b 7→
iH(ā)⊗ iK(b).

The endomorphism ring of A becomes an Ae-bimodule via the right Ae-
module structure on A, that is ((ā⊗b)·f)(α) := f(aαb) and (f ·(ā⊗b))(α) :=
af(α)b for f ∈ End(A) and α ∈ A. This means that the opposite algebra
End(A)op is an Ae-ring via iEnd(A)op : Ā⊗A −→ End(A) , ā⊗ b 7→ (α 7→ aαb).
We define two Ae-bimodule maps for each M ∈ AeMAe by

ζ : M ×A End(A) −→M , m⊗ f 7→ mf(1)

ζ ′ : End(A)×AM −→M , f ⊗m 7→ mf(1) .

Definition 4.1.12 A ×A-coalgebra is an Ae-bimodule H together with a
comultiplication ∆ : H −→ H ×A H and a counit ε : H −→ End(A), both of
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which are Ae-bimodule maps, such that the following diagrams commute:

H H ×A H-∆

H ×A H
?

∆

(H ×A H)×A H
?

∆×AH

H ×A H ×A H-
α

H ×A (H ×A H)
?

H×A∆

?

α′

H H ×A H-∆

H
?

id

H ×A End(A)
?

H×Aε

�
ζ

H H ×A H-∆

H
?

id

End(A)×A H
?

ε×AH

�
ζ′

Definition 4.1.13 A ×A-bialgebra H is an Ae-ring that has the structure of
a ×A-coalgebra such that the comultiplication ∆ : H −→ H ×AH and counit
ε : H −→ End(A)op are maps of Ae-rings.

In order to show that this is the correct definition, we prove that the notions
of right bialgebroid and ×A-bialgebra are equivalent:

Theorem 4.1.14 For an algebra H the following are equivalent:

1) A right A-bialgebroid structure (H, s, t,∆, ε).

2) A ×A-bialgebra structure (H,∆, ε).

Proof. Let (H, s, t,∆, ε) be a right bialgebroid. The A-bimodule structure
on H imposed by the definition is equivalent to a right Ae-module structure
h · (ā ⊗ b) := ht(a)s(b). The algebra H becomes an Ae-ring via the algebra
map iH : Ae −→ H, iH(ā⊗b) := t(a)s(b), and the corresponding Ae-bimodule
structure on H is given by the right Ae-module structure above and the left
Ae-module structure (ā⊗ b) · h := iH(ā⊗ b)h = t(a)s(b)h.

With these structures we have H M H = (H ⊗H)/ < h · a⊗ g−h⊗ g · ā >=
(H⊗H)/ < hs(a)⊗ g−h⊗ gt(a) >= H⊗AH, and thus H×AH = {h⊗ g ∈
H M H | a · h⊗ g = h⊗ ā · g} = {h⊗ g ∈ H ⊗AH | s(a)h⊗ g = h⊗ t(a)g} =
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{h⊗g ∈ H⊗AH | (s(a)⊗1)(h⊗g) = (1⊗t(a))(h⊗g)}. Hence, the identities
1), 2) and 3) in Definition 4.1.6 imply that ∆ induces an Ae-ring map ∆′ : H
−→ H ×A H. It is clear that coassociativity of ∆ implies coassociativity of
∆′ in the sense of Definition 4.1.12.
We use the counit ε : H −→ A to define a map ε′ : H −→ End(A) by
ε′(h)(α) := ε(s(α)h) = ε(t(α)h) for h ∈ H and α ∈ A. The last equal-
ity holds, since we have ε(s(α)) = α = ε(t(α)) by identity 5) and right
Ae-linearity of ε, and this implies ε(s(α)h) = ε(sεs(α)h) = ε(tεs(α)h) =
ε(t(α)h) by identity 4). Obviously, the map ε′ is right Ae-linear since ε
is, and it is left Ae-linear since ε′(a · h)(α) = ε(s(α)s(a)h) = ε(s(αa)h) =
ε′(h)(αa) = a · (ε′(h))(α) and ε′(ā · h)(α) = ε(t(α)t(a)h) = ε(t(aα)(h) =
ε′(h)(aα) = ā·ε′(h)(α) by definition of the Ae-bimodule structure on End(A).
By identity 4) we get ε′(g)ε′(h)(α) = ε′(g)(ε(s(α)h)) = ε(s(ε(s(α)h))g) =
ε(s(α)hg) = ε′(gh)(α), which shows that ε′ : H −→ End(A)op is an Ae-ring
map.
Finally, we have ζ ◦ (H ×A ε′) ◦∆′(h) = h(1)ε

′(h(2))(1) = h(1)ε(h(2)) = h and

ζ ′ ◦ (ε′ ×A H) ◦∆′(h) = h(2) · ε′(h(1))(1) = ε(h(1))h(2) = h for all h ∈ H.

Conversely, let H be a ×A-bialgebra with comultiplication ∆ and counit ε.
We define the source map by s : A −→ H , a 7→ iH(1⊗a) and the target map
by t : Ā −→ H , a 7→ iH(ā⊗ 1), where iH : Ae −→ H is the algebra map that
gives the Ae-ring structure on H. Obviously, the images of s and t commute
in H and the induced A-bimodule structure is a·h·b = hs(b)t(a) = hiH(ā⊗b),
which corresponds to the natural right Ae-module structure on H.

We have H⊗AH = (H⊗H)/ < hs(a)⊗g−h⊗gt(a) >, and since hs(a)⊗g =
hiH(1⊗ a)⊗ g = ha⊗ g and h⊗ gt(a) = h⊗ giH(ā⊗ 1) = h⊗ gā, it follows
that H M H = H ⊗A H. Hence, the comultiplication ∆ : H −→ H ×A H
induces a map ∆′ : H −→ H M H = H ⊗A H in MAe . The counit ε : H
−→ End(A) induces a map ε′ : H −→ A , h 7→ ε(h)(1) in MAe . It is clear
that ∆′ and ε′ make H into an A-coring.
Moreover, identity 1) for a right bialgebroid corresponds to the fact that
∆′(H) ⊂ H ×A H, as follows from (s(a) ⊗ 1)∆′(h) = (iH(1 ⊗ a) ⊗ 1)(h(1) ⊗
h(2)) = ah(1) ⊗ h(2) and (1 ⊗ t(a))∆′(h) = (1 ⊗ iH(ā ⊗ 1))(h(1) ⊗ h(2)) =
h(1) ⊗ āh(2). The identities 2) and 3) hold because ∆ : H −→ H ×A H is an
Ae-ring map. The counit satisfies 4) and 5), since ε : H −→ End(A)op is an Ae-
ring map and hence ε′(s(ε′(g))h) = ε(s(ε(g)(1))h)(1) = (ε(g)(1)) · ε(h)(1) =
ε(h)(ε(g)(1)) = ε(gh)(1) = ε′(gh) and ε′(t(ε′(g))h) = ε(t(ε(g)(1))h)(1) =
ε(g)(1)ε(h)(1) = ε(h)(ε(g)(1)) = ε(gh)(1) = ε′(gh). 2
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Let H be a ×A-bialgebra. For M,N ∈ MH , we define a right H-module
structure on M M N by (m⊗n)�h := m�h(1)⊗n�h(2) for m ∈M,n ∈ N
and h ∈ H. It is well-known (see [39]) that an Ae-ring L is a ×A-bialgebra if
and only if the category (LM, �) is monoidal such that the underlying functor

LM−→ AeM is strictly monoidal. Of course, a corresponding property holds
for right modules over ×A-bialgebras:

Theorem 4.1.15 The following are equivalent for an Ae-ring H:

1) A ×A-bialgebra structure on H.

2) The structure of a monoidal category on MH such that the underlying
functor MH −→MAe is strictly monoidal.

This theorem explains why the counit of a ×A-bialgebra H has to be an Ae-
ring map ε : H −→ End(A)op: The category (MAe ,M) is monoidal with unit
object A. So for the underlying functorMH −→MAe to be monoidal, A has
to be made into a right H-module. This is done via an algebra morphism
Hop −→ End(A).

Now we are looking for the correct categorical definition of ×A-Hopf algebra.
Recall that a ×A-bialgebra L is called a ×A-Hopf algebra if the underlying
functor LM−→ AeM preserves right inner hom-functors (see the appendix for
a definition of inner hom-functors). Since we are considering right modules
over ×A-bialgebras, we have to switch to left inner hom-functors:

Proposition 4.1.16 Let H be a ×A-bialgebra. The category (MH ,M) is left
closed with inner hom-functor homMH

(N,P ) = Hom−H(N M H,P ).

Proof. Let N be a right H-module. There is an H-bimodule structure on
N M H with the left H-module structure induced by H. We have for all
M ∈MH a well-defined isomorphism

N MM
∼=−→M ⊗H (N M H) , n⊗m 7→ m⊗ n⊗ 1

with inverse m⊗ (n⊗ h) 7→ n⊗m · h. So the hom-tensor adjunction yields

Hom−H(N MM,P ) ∼= Hom−H(M ⊗H (N M H), P )
∼= Hom−H(M,Hom−H(N M H,P )) .

This shows that the functor P 7→ Hom−H(N M H,P ) is right adjoint to the
functor M 7→ N MM . 2
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The category (MAe ,M) is left closed, since the category (AMA,⊗A) is closed
with left inner hom-functor hom

AMA
(N,P ) = HomA(N,P ). This means that

the left inner hom-functor inMAe is given as homMAe
(N,P ) = Hom−Ā(N,P )

with the right Ae-module structure (f · (ā⊗ b))(n) = f(na)b.

Now we can prove, similarly to [43]:

Theorem and Definition 4.1.17 Let H be a ×A-bialgebra. Then the fol-
lowing are equivalent:

1) The underlying functorMH −→MAe preserves left inner hom-functors.

2) The map γ : H ⊗Ā H −→ H M H , h⊗ g 7→ hg(1) ⊗ g(2) is a bijection.

If these equivalent conditions hold, we call H a ×A-Hopf algebra.

Proof. We note that if γ is a bijection, then so is the map

γN : N ⊗Ā H −→ N M H , n⊗ h 7→ n · h(1) ⊗ h(2)

for all N ∈MH , since γN can be identified with N ⊗H γ.

Let N,P ∈MH . The evaluation map for the left inner hom-functor in MH

is given by

ev : N M Hom−H(N M H,P ) −→ P , ev(n⊗ f) := f(n⊗ 1) .

The left inner hom-functor Hom−Ā(N,P ) in MAe can be identified with
Hom−H(N ⊗Ā H,P ) via Hom−H(N ⊗Ā H,P ) 3 f 7→ (n 7→ f(n ⊗ 1)) ∈
Hom−Ā(N,P ). Under this identification the evaluation map is given by

ev′ : N M Hom−H(N ⊗Ā H,P ) −→ P , ev′(n⊗ f) := f(n⊗ 1) .

Then the unique map

ϕ : Hom−H(N M H,P ) −→ Hom−H(N ⊗Ā H,P )

that satisfies ev = ev′(N M ϕ), and exists by the universal property of
Hom−Ā(N,P ), is given by

ϕ(f)(n⊗ h) = ϕ(f)(n⊗ 1) · h = f(n⊗ 1) · h = f((n⊗ 1) · h)

= f(nh(1) ⊗ h(2)) = f(γN(n⊗ h)) .

Now we get by the Yoneda Lemma that ϕ is bijective for all P if and only if
γN is bijective. 2
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Now that we have determined how ×A-bialgebras are related to ×A-bialge-
bras, it is clear that all the results that are known for ×A-bialgebras hold
in a similar way for ×A-bialgebras. It is necessary to have both these con-
cepts, though, especially if we want to consider left and right Hopf-Galois
extensions.

Schauenburg has shown in [39] that ×A-bialgebras occur naturally with Hopf-
Galois extensions over non-trivial sets of coinvariants:
Let T be a left faithfully flat H-Galois extension of B and assume that T
is flat as a k-module. Then there is a structure of ×B-bialgebra on L :=
{
∑
xi ⊗ yi ∈ T ⊗ T |

∑
xi ⊗ yi(0) ⊗ yi(1) =

∑
xi(0) ⊗ yi ⊗ S(xi(1))}. It makes

T into a left L-comodule algebra in sense of the following definition:

Definition 4.1.18 Let L be a ×B-coalgebra. A left L-comodule is a B-
bimodule M together with a map δ : M −→ L ×B M of B-bimodules such
that the following diagrams commute:

M L×B M-δ

L×B M
?

δ

(L×B L)×B M
?

∆×BM

L×B (L×B M)
?

L×Bδ

L×B L×B M
?

α′

-
α

M L×B M-δ

M
?

id

End(B)×B M�
ϑ′

?

ε×BM

It is proved in [39] that the category LM of left comodules over a ×B-
bialgebra is monoidal with the tensor product over B.

Definition 4.1.19 Let L be a ×B-bialgebra and let T be a B-ring that is
also a left L-comodule. Then we call T a left L-comodule algebra if the
comodule structure map δ : T −→ L×B T is an algebra map.

Note that this definition makes sense, since we have seen that L×B T really
possesses an algebra structure.
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For the above situation of a left faithfully flat H-Galois extension T of B, it
was shown in [39] that the left action of the ×B-bialgebra L is such that T
becomes a left L-Galois extension of k. Hopf-Galois extensions with respect
to ×A-bialgebras are defined as follows, see [39]:

Definition 4.1.20 Let L be a ×B-bialgebra and let T be a left L-comodule
algebra. Let C := coLT := {x ∈ T | δ(x) = 1L ⊗ x}. Then T is called a left
L-Galois extension of C if the map

β : T ⊗C T −→ L � T , x⊗ y 7→ x(−1) ⊗ x(0)y

is an isomorphism, and restricts to an isomorphism

T ⊗C TB ∼= L×B T .

It is well-known that a k-bialgebra that admits a Hopf-Galois extension is a
Hopf algebra. We prove that the same statement holds for ×B-bialgebras.
The following generalizes a proof of Takeuchi, see [42]:

Lemma 4.1.21 Let L be a ×B-bialgebra and let T be a left L-Galois ex-
tension of C = coLT that is faithfully flat as a left B-module. Then L is a
×B-Hopf algebra.

Proof. The ×B-bialgebra L is ×B-Hopf algebra if the map βL : L ⊗B̄ L
−→ L � L , ` ⊗ m 7→ `(1) ⊗ `(2)m is bijective. By assumption, we have a
bijection βT : T ⊗C T −→ L � T , x ⊗ y 7→ x(−1) ⊗ x(0)y. We consider the
following diagram

T ⊗C T ⊗C ⊗T L � T ⊗C T-βT⊗CT

T ⊗C (L � .T )
?

T⊗CβT

(L⊗B̄ L) � T
?

β13

L � L � T-
βL�T

?

L�βT

where the map β13 : T ⊗C (L� .T ) −→ (L⊗B̄ L)�T is given by applying βT to
the first and third tensorand and leaving the middle tensorand untouched,
that is β13(x ⊗ ` ⊗ y) := x(−1) ⊗ ` ⊗ x(0)y. The left C-module structure on
L � .T is induced by the left C-module structure of T .



98 Chapter 4. Bialgebroids and Hopf Algebroids for B-Torsors

In order to show that β13 is well-defined, we first consider the map β13
00 :

T ⊗ (L ⊗ T ) −→ (L ⊗B̄ L) � T , x ⊗ ` ⊗ y 7→ x(−1) ⊗ ` ⊗ x(0)y. We have for
b ∈ B

β13
00(x⊗ `⊗ by) = x(−1) ⊗ `⊗ x(0)by

= x(−1)b̄⊗ `⊗ x(0)y

since x(−1) ⊗ x(0) ∈ L×B T , and

β13
00(x⊗ b̄`⊗ y) = x(−1) ⊗ b̄`⊗ x(0)y

= x(−1)b̄⊗ `⊗ x(0)y

in (L⊗B̄L)�T , which shows that there exists a factorization β13
0 : T⊗(L�T )

−→ (L⊗B̄ L) � T . Now we get for c ∈ C = coLT

β13
0(xc⊗ `⊗ y) = (xc)(−1) ⊗ `⊗ (xc)(0)y

= x(−1)c(−1) ⊗ `⊗ x(0)c(0)y

= x(−1) ⊗ `⊗ x(0)cy

= β13
0(x⊗ `⊗ cy) ,

and therefore β13
0 factors over T ⊗C (L � .T ) as β13. It is clear that β13 is an

isomorphism. It is straightforward to see that the other maps in the diagram
are also well-defined and bijective with the possible exception of the map
βL � T . But the diagram commutes, since

(L � βT )(βT ⊗C T )(x⊗ y ⊗ z) = (L � βT )(x(−1) ⊗ x(0)y ⊗ z)

= x(−2) ⊗ x(−1)y(−1) ⊗ x(0)y(0)z

and

(βL � T )β13(T ⊗C βT )(x⊗ y ⊗ z) = (βL ⊗B T )β13(x⊗ y(−1) ⊗ y(0)z)

= (βL ⊗B T )(x(−1) ⊗ y(−1) ⊗ x(0)y(0)z

= x(−2) ⊗ x(−1)y(−1) ⊗ x(0)y(0)z

for all x ⊗ y ⊗ z ∈ T ⊗C T ⊗C T . We conclude that the map βL � T must
also be bijective. Since the left B̄-module structures on both (L ⊗B̄ L) and
L �L can be identified with a right B-module structure (and hence � can be
interpreted as ⊗B), we can conclude by left faithful flatness of T over B that
the map βL is bijective. 2

It is straightforward to find the correct definition of right comodules over a
×A-bialgebra H via the analogy in the definitions of ×A-bialgebra and ×A-
bialgebra. Then one can consider H-comodule algebras and right H-Galois
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extensions. We conclude that the previous proposition has a ×A-version for
right H-Galois extensions, saying that a×A-bialgebra that admits a faithfully
flat right Hopf-Galois extension is a ×A-Hopf algebra.

4.2 B-Torsors and associated

Hopf Algebroids

Let H be a k-Hopf algebra and let A be a right H-Galois extension of B
such that B is not isomorphic to k. Then the model of quantum torsor as
defined by Grunspan is obviously no longer sufficient to encode both the right
coaction of H and the left coaction of the ×B-bialgebra that we described in
the previous section. Nevertheless, one can still find a way to “hide” both
coactions in just one map. Such a structure was defined by Schauenburg in
[42] under the name of B-torsor:

Definition 4.2.1 Let B be a k-algebra, and B ⊂ T an algebra extension,
with T a faithfully flat k-module.
The centralizer (T ⊗B T )B of B in the (B,B)-bimodule T ⊗B T is an algebra
by (a⊗ b)(x⊗ y) = xa⊗ by for a⊗ b, x⊗ y ∈ (T ⊗B T )B.
A B-torsor structure on T is an algebra morphism µ : T −→ T ⊗ (T ⊗B T )B

satisfying the axioms

1) x(1)x(2) ⊗ x(3) = 1⊗ x ∈ T ⊗B T

2) x(1) ⊗ x(2)x(3) = x⊗ 1 ∈ T ⊗ T

3) µ(b) = b⊗ 1⊗ 1 ∀ b ∈ B

4) µ(x(1))⊗ x(2) ⊗ x(3) = x(1) ⊗ x(2) ⊗ µ(x(3)) ∈ T ⊗ T ⊗B T ⊗ T ⊗B T

where µ0(x) := x(1) ⊗ x(2) ⊗ x(3) is the notation for the induced map µ0 : T
−→ T ⊗ T ⊗B T .
We note that the composition of maps in axiom 4) is well-defined because of
axiom 3).

With the observation that also in this more general case, the torsor structure
map µ defines a descent data from T to k on T ⊗B T , Schauenburg proves
the following theorem in [42]. It generalizes Grunspan’s results on quantum
torsors in [18] and establishes, under certain assumptions on faithful flatness,
an equivalence between B-torsors and Hopf-Galois extensions of B.
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In order not to become confused with too many sums and indices, we will
abuse notations in this section and denote elements in a subset of a tensor
product as if they were decomposable tensors.

Theorem 4.2.2 Let T be a B-torsor, and assume that T is a faithfully flat
right B-module.
Then the subalgebra of (T ⊗B T )B

H := {x⊗ y ∈ T ⊗B T | xy(1) ⊗ y(2) ⊗ y(3) = 1⊗ x⊗ y}

is a faithfully flat Hopf algebra with structure maps

∆(x⊗ y) = x⊗ y(1) ⊗ y(2) ⊗ y(3)

ε(x⊗ y) = xy .

The algebra T is an H-Galois extension of B under the coaction δ : T −→
T ⊗ H , δ(x) = µ(x) = x(1) ⊗ x(2) ⊗ x(3). The Galois map is given by
β(x⊗ y) = xy(1) ⊗ y(2) ⊗ y(3).

Let H be a faithfully flat Hopf algebra and T a right faithfully flat H-Galois
extension of B ⊂ T . Then T is a B-torsor with

µ : T 3 x 7→ x(0) ⊗ x(1)
[1] ⊗ x(1)

[2] ∈ T ⊗ (T ⊗B T )B ,

where h[1] ⊗ h[2] := β−1(1 ⊗ h) ∈ T ⊗B T for all h ∈ H with respect to the
Galois map β : T ⊗B T −→ T ⊗H.

In case B = k, we know from [18] that the Grunspan map θ of a quantum
torsor T is uniquely determined by the other structure maps. It has a prop-
erty that links the torsor structure map of T with the structure map of its
opposite torsor T op. Using the theory of faithfully flat descent, it was shown
in [41] that the existence of the map θ and its properties do not have to be
included in the definition of a quantum torsor in case it is faithfully flat. We
have also shown at the end of the first chapter that the parallelogram axiom,
which was in fact responsible for the appearance of θ in the quantized case, is
redundant. Nevertheless, a Grunspan map always exists, and starting from
a faithfully flat H-Galois extension A of k, it is given by the formula (1.21).

In this section we will show that in the more general case of a B-torsor T ,
we can still recover a remainder of the Grunspan map as an endomorphism
of the centralizer TB. This is because a map that is given by the formula
(1.22) appears in the context of a particular Hopf algebroid that arises with
B-torsors.

We start by showing that we can associate a right TB-bialgebroid to each
B-torsor:
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Proposition 4.2.3 Let T be a B-torsor, and assume that the centralizer
(T ⊗B T )B is faithfully flat over k.
Then (T ⊗B T )B is a right bialgebroid over TB with the following structure
maps:

• source map s : TB −→ (T ⊗B T )B , r 7→ 1⊗ r

• target map t : TB −→ (T ⊗B T )B , r 7→ r ⊗ 1

• comultiplication

∆ : (T ⊗B T )B −→ (T ⊗B T )B ⊗TB (T ⊗B T )B

x⊗ y 7→ x⊗ y(1) ⊗ y(2) ⊗ y(3)

• counit ε : (T ⊗B T )B −→ TB , x⊗ y 7→ xy

Proof. We show that the bialgebroid axioms in Definition 4.1.6 are satisfied.
It is easy to see that the base ring TB is a subalgebra of T . The total ring
(T ⊗B T )B becomes an algebra by (a⊗ b)(x⊗ y) = xa⊗ by for a⊗ b, x⊗ y ∈
(T ⊗B T )B. With this algebra structure on (T ⊗B T )B, it follows that s is an
algebra morphism and t is an algebra anti-morphism satisfying s(r)t(r′) =
(1⊗ r)(r′ ⊗ 1) = r′ ⊗ r = (r′ ⊗ 1)(1⊗ r) = t(r′)s(r).
The resulting TB-bimodule structure on (T ⊗B T )B is

r · (x⊗ y) · r′ = (x⊗ y)s(r′)t(r) = (x⊗ y)(1⊗ r′)(r ⊗ 1) = rx⊗ yr′ .

In order to show that ∆ is well-defined, we first consider the map

∆0 : T ⊗B T −→ T ⊗B T ⊗ (T ⊗B T )B , u⊗ v 7→ u⊗ v(1) ⊗ v(2) ⊗ v(3) .

This map is well-defined, since we have ub⊗v(1)⊗v(2)⊗v(3) = u⊗bv(1)⊗v(2)⊗
v(3) = u ⊗ (bv)(1) ⊗ (bv)(2) ⊗ (bv)(3) for b ∈ B and u, v ∈ T by the B-torsor
axiom 3). Now we can show that ∆0((T ⊗B T )B) ⊆ (T ⊗B T )B ⊗ (T ⊗B T )B:
Let x⊗ y ∈ (T ⊗B T )B and b ∈ B. Then ∆0(bx⊗ y) = ∆0(x⊗ yb) and hence

bx⊗ y(1) ⊗ y(2) ⊗ y(3) = x⊗ (yb)(1) ⊗ (yb)(2) ⊗ (yb)(3)

= x⊗ y(1)b(1) ⊗ b(2)y(2) ⊗ y(3)b(3)

= x⊗ y(1)b⊗ y(2) ⊗ y(3)

by axiom 3). The claim follows by faithful flatness of (T ⊗B T )B over k.
The map ∆ is obtained by composing ∆0 with the canonical residue class
morphism (T ⊗B T )B ⊗ (T ⊗B T )B −→ (T ⊗B T )B ⊗TB (T ⊗B T )B.
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The counit map ε is well-defined, since for x⊗ y ∈ (T ⊗B T )B, b ∈ B we have
bxy = xyb and thus ε((T ⊗B T )B) ⊆ TB.

We check that ∆ and ε are (TB, TB)-bimodule morphisms. Let x ⊗ y ∈
(T ⊗B T )B and r ∈ TB. Then

∆(r · (x⊗ y)) = ∆(rx⊗ y) = rx⊗ y(1) ⊗ y(2) ⊗ y(3) =

= r · (x⊗ y(1))⊗ (y(2) ⊗ y(3)) = r ·∆(x⊗ y)

and

∆((x⊗ y) · r) = ∆(x⊗ yr) = x⊗ (yr)(1) ⊗ (yr)(2) ⊗ (yr)(3) =

= x⊗ y(1)r(1) ⊗ r(2)y(2) ⊗ y(3)r(3) =

= x⊗ y(1) ⊗ r(1)r(2)y(2) ⊗ y(3)r(3) =

= x⊗ y(1) ⊗ y(2) ⊗ y(3)r = ∆(x⊗ y) · r ,

where we used µ(r) ∈ TB ⊗ (T ⊗B T )B, which follows from µ(br) = br(1) ⊗
r(2) ⊗ r(3) and µ(rb) = r1b⊗ r(2) ⊗ r(3) and faithful flatness of (T ⊗B T )B.
For the counit we get ε(rx⊗ y) = rxy = r · ε(x⊗ y) and ε(x⊗ yr) = xyr =
ε(x⊗ y) · r.
Coassociativity of ∆ follows from coassociativity of µ and the counit axioms
follow from (ε ⊗ id)∆(x ⊗ y) = xy(1) ⊗ y(2) ⊗ y(3) = 1 ⊗ xy(1)y(2) ⊗ y(3) =
1⊗ x⊗ y ∼= x⊗ y, since xy(1) ⊗ y(2) ⊗ y(3) ∈ TB ⊗ (T ⊗B T )B, and (id⊗ε)∆
(x⊗ y) = x⊗ y(1) ⊗ y(2)y(3) = x⊗ y ⊗ 1 ∼= x⊗ y. This means that ∆ and ε
make (T ⊗B T )B into a comonoid in TBMTB .

The proof of the first identity 1) requires the following lemma:

Lemma 4.2.4 The map

ψ : (T ⊗B T )B ⊗TB (T ⊗B T )B −→ (T ⊗B T ⊗B T )B

x⊗ y ⊗ v ⊗ w 7→ x⊗ yv ⊗ w

is bijective.

Proof. We claim that the inverse of ψ is given by

φ : (T ⊗B T ⊗B T )B −→ (T ⊗B T )B ⊗TB (T ⊗B T )B

x⊗ y ⊗ z 7→ x⊗ yz(1) ⊗ z(2) ⊗ z(3)

It is easy to see that both ψ and φ are well-defined. They are inverse to each
other since

φ ◦ ψ(x⊗ y ⊗ v ⊗ w) = φ(x⊗ yv ⊗ w) = x⊗ yvw(1) ⊗ w(2) ⊗ w(3)

= x⊗ y ⊗ vw(1)w(2) ⊗ w(3) = x⊗ y ⊗ v ⊗ w ,
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where we used that vw(1) ⊗ w(2) ⊗ w(3) ∈ TB ⊗ (T ⊗B T )B, and

ψ ◦φ(x⊗ y⊗ z) = ψ(x⊗ yz(1)⊗ z(2)⊗ z(3)) = x⊗ yz(1)z(2)⊗ z(3) = x⊗ y⊗ z .

2

Now we obtain for x⊗ y ∈ (T ⊗B T )B and r ∈ TB that

(s(r)⊗ 1⊗ 1)∆(x⊗ y) = (1⊗ r ⊗ 1⊗ 1)(x⊗ y(1) ⊗ y(2) ⊗ y(3))

= x⊗ ry(1) ⊗ y(2) ⊗ y(3)

(1⊗ 1⊗ t(r))∆(x⊗ y) = (1⊗ 1⊗ r ⊗ 1)(x⊗ y(1) ⊗ y(2) ⊗ y(3))

= x⊗ y(1) ⊗ y(2)r ⊗ y(3) .

Applying the map ψ to both terms yields

ψ(x⊗ ry(1) ⊗ y(2) ⊗ y(3)) = x⊗ ry(1)y(2) ⊗ y(3) = x⊗ r ⊗ y =

= x⊗ y(1)y(2)r ⊗ y(3) = ψ(x⊗ y(1) ⊗ y(2)r ⊗ y(3)) ,

and so it follows by bijectivity of ψ that (s(r) ⊗ 1 ⊗ 1)∆(x ⊗ y) = (1 ⊗ 1 ⊗
t(r))∆(x⊗ y), which is 1).

The remaining identities are proved by direct calculation:

Identity 2) holds, since ∆((x ⊗ y)(v ⊗ w)) = ∆(vx ⊗ yw) = vx ⊗ (yw)(1) ⊗
(yw)(2) ⊗ (yw)(3) = vx ⊗ y(1)w(1) ⊗ w(2)y(2) ⊗ y(3)w(3) = (x ⊗ y(1) ⊗ y(2) ⊗
y(3))(v ⊗ w(1) ⊗ w(2) ⊗ w(3)) = ∆(x⊗ y)∆(v ⊗ w), and we have 3) since µ is
an algebra morphism.
Finally, also 4) and 5) hold, since ε(s(ε(x⊗ y))(v⊗w)) = ε(s(xy)(v⊗w)) =
ε((1⊗xy)(v⊗w)) = ε(v⊗xyw) = vxyw and ε((x⊗y)(v⊗w)) = ε(vx⊗yw) =
vxyw and also ε(t(ε(x⊗y))(v⊗w)) = ε(t(xy)(v⊗w)) = ε((xy⊗1)(v⊗w)) =
ε(vxy ⊗ w) = vxyw, and of course ε(1⊗ 1) = 1. 2

From now on let T be a B-torsor that is right faithfully flat over B, and
assume that (T ⊗B T )B is a faithfully flat k-module. With these assumptions
we have the results of Propositions 4.2.2 and 4.2.3 at hand.
We denote the right H-comdule structure on T by

δ(t) := t(0) ⊗ t(1) = t(1) ⊗ t(2) ⊗ t(3) ⊆ T ⊗H ⊆ T ⊗ (T ⊗B T )B .

Now we are going to derive a result that can be found in [20] for finite
dimensional Hopf-Galois extensions.
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We know by Theorem 4.2.2 that the Galois map for the B-torsor T is given
by

β : T ⊗B T −→ T ⊗H , x⊗ y −→ xy(1) ⊗ y(2) ⊗ y(3) .

This is an isomorphism of (T,B)-bimodules, where the (T,B)-bimodule
structure on T ⊗ H is induced by T and the structure on T ⊗B T comes
from the obvious (T, T )-bimodule structure. By restriction, both T ⊗B T
and T ⊗H become (B,B)-bimodules, and hence the Galois map induces an
isomorphism

β : (T ⊗B T )B ∼= (T ⊗H)B ∼= TB ⊗H .

So the algebra structure of the TB-bialgebroid (T ⊗B T )B from the previous
proposition can be transfered to TB ⊗H, turning β : (T ⊗B T )B −→ TB ⊗H
into an algebra morphism.
Recall the properties of the expression h[1]⊗h[2] = β−1(1⊗h) for h ∈ H from
Section 1.2. By (1.3) we have β−1(r⊗h) = rh[1]⊗h[2] for all r⊗h ∈ TB⊗H.
Let r, s ∈ TB and h = h1 ⊗ h2, g = g1 ⊗ g2 ∈ H ⊂ T ⊗B T . We determine
the induced algebra structure on TB ⊗H as

(r ⊗ h) • (s⊗ g) = β(β−1(r ⊗ h)β−1(s⊗ g))

= β((rh[1] ⊗ h[2])(sg[1] ⊗ g[2]))

= β(sg[1]rh[1] ⊗ h[2]g[2])

= sg[1]rh[1](h[2]g[2])(1) ⊗ (h[2]g[2])(2) ⊗ (h[2]g[2])(3)

= sg[1]rh[1]h[2](1)g[2](1) ⊗ g[2](2)h[2](2) ⊗ h[2](3)g[2](3)

= sg[1]rg[2](1) ⊗ g[2](2)h1 ⊗ h2g
[2](3) ,

since β(h[1] ⊗ h[2]) = h[1]h[2](1) ⊗ h[2](2) ⊗ h[2](3) = 1⊗ h1 ⊗ h2.

Now H-colinearity of β implies that

g(1)
[1] ⊗ g(1)

[2] ⊗ g(2) = β−1(1⊗ g(1))⊗ g(2)

= (id⊗δ)β−1(1⊗ g)

= (id⊗δ)(g[1] ⊗ g[2])

= g[1] ⊗ g[2](1) ⊗ g[2](2) ⊗ g[2](3) ,

and hence

(r ⊗ h) • (s⊗ g) = sg[1]rg[2](1) ⊗ g[2](2)h1 ⊗ h2g
[2](3)

= sg(1)
[1]rg(1)

[2] ⊗ g(2)1h1 ⊗ h2g(2)2

= sg(1)
[1]rg(1)

[2] ⊗ hg(2)

= s(r � g(1))⊗ hg(2) ,
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where � : TB ⊗H −→ TB, r � h := h[1]rh[2] denotes the Miyashita-Ulbrich
action of H on TB that we introduced in Section 1.2.

Proposition 4.2.5 The Galois map β induces a smash product algebra
structure on TB ⊗Hop by

(r#h)(s#g) := r(h(1) � s)#h(2) · g

where � denotes the Miyashita-Ulbrich action of Hop on TB from the left
and h · g := gh indicates the multiplication in Hop.

Proof. Applying the above calculation on the opposite algebra structure of
(T⊗BT )B yields the formula (r⊗h)•op (s⊗g) = r(s�h(1))⊗gh(2) ∈ TB⊗H.
The right Miyashita-Ulbrich action � : TB ⊗H −→ TB corresponds to a left
action of Hop on TB that we denote by h�r := h[1]rh[2]. Hence, in TB⊗Hop,
the formula reads (r⊗h)•op (s⊗ g) = r(h(1) � s)⊗h(2) · g ∈ TB⊗Hop, which
shows that it is in fact a smash product multiplication. 2

Remark 4.2.6 We know by Remark 4.1.7 that the structure of right TB-
bialgebroid on (T ⊗B T )B leads to a structure of left TB-bialgebroid on the
opposite algebra ((T ⊗B T )B)op. The corresponding structure maps are

• source map s : TB −→ ((T ⊗B T )B)op , r 7→ r ⊗ 1

• target map t : TB −→ ((T ⊗B T )B)op , r 7→ 1⊗ r

• comultiplication

∆ : ((T ⊗B T )B)op −→ ((T ⊗B T )B)op ⊗TB ((T ⊗B T )B)op

x⊗ y 7→ x⊗ y(1) ⊗ y(2) ⊗ y(3)

• counit ε : ((T ⊗B T )B)op −→ TB , x⊗ y 7→ xy

Now the algebra isomorphism β : ((T ⊗B T )B)op −→ TB#Hop allows us to
transfer the left TB-bialgebroid structure of ((T ⊗B T )B)op onto TB#Hop.
This will make β into a morphism of left bialgebroids over TB.

Proposition 4.2.7 The smash product algebra TB#Hop is a left bialgebroid
over TB with the structure maps

• source map s̃ : TB −→ TB#Hop , r 7→ r ⊗ 1

• target map t̃ : TB −→ TB#Hop , r 7→ r(1) ⊗ r(2) ⊗ r(3) = r(0) ⊗ r(1)
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• comultiplication

∆̃ : TB#Hop −→ TB#Hop ⊗TB TB#Hop

r ⊗ h 7→ r ⊗ h(1) ⊗ 1⊗ h(2)

• counit ε̃ : TB#Hop −→ TB , r ⊗ h 7→ rεH(h)

Proof. Applying the Galois map β to the source and target maps of ((T⊗B
T )B)op yields for r ∈ TB

s̃(r) = β(sop(r)) = β(r ⊗ 1) = r ⊗ 1

t̃(r) = β(top(r)) = β(1⊗ r) = r(1) ⊗ r(2) ⊗ r(3) = r(0) ⊗ r(1)

The images of s̃ and t̃ commute in TB#Hop, since s̃(x)t̃(y) = (x⊗ 1)(y(0) ⊗
y(1)) = xy(0)⊗ y(1) and t̃(y)s̃(x) = (y(0)⊗ y(1))(x⊗ 1) = y(0)(y(1) � x)⊗ y(2) =
y(0)y(1)

[1]xy(1)
[2] ⊗ y(2) = xy(0) ⊗ y(1) by (1.10) for all x, y ∈ TB.

For the comultiplication ∆̃, we consider the diagram

((T ⊗B T )B)op TB#Hop-β

((T ⊗B T )B)op ⊗TB ((T ⊗B T )B)op
?

∆

TB#Hop ⊗TB TB#Hop-
β⊗

TB
β

?

∆̃

Note that the map β ⊗TB β is well-defined, since the (TB, TB)-bimodule
structure on TB#Hop is induced by β. So we obtain for r ⊗ h ∈ TB#H

∆̃(r ⊗ h) = (β ⊗TB β)∆β−1(r ⊗ h)

= (β ⊗TB β)∆(rh[1] ⊗ h[2])

= (β ⊗TB β)(rh[1] ⊗ h[2](1) ⊗ h[2](2) ⊗ h[2](3))

= rh[1]h[2](1) ⊗ h[2](2) ⊗ h[2](3) ⊗ h[2](4)h[2](5) ⊗ h[2](6) ⊗ h[2](7)

= rh[1]h[2](1) ⊗ h[2](2) ⊗ h[2](3) ⊗ 1⊗ h[2](4) ⊗ h[2](5)

= r ⊗ h(1) ⊗ 1⊗ h(2) .

Finally, the induced counit is given by ε̃(r⊗h) = εβ−1(r⊗h) = rεβ−1(1⊗h) =
rε(h[1] ⊗ h[2]) = rh[1]h[2] = rεH(h). 2
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Remark 4.2.8 The (TB, TB)-bimodule structure on the left bialgebroid
TB#Hop is given by

x · (r ⊗ h) = s̃(x)(r ⊗ h) = (x⊗ 1)(r ⊗ h) = x(1 � r)⊗ 1 · h = xr ⊗ h

(r ⊗ h) · x = t̃(x)(r ⊗ h) = (x(0) ⊗ x(1))(r ⊗ h) = x(0)(x(1) � r)⊗ x(2) · h =

= rx(0) ⊗ hx(1)

for x ∈ TB and r ⊗ h ∈ TB#Hop. The last equality follows from x(0)(x(1) �

r) = x(0)x(1)
[1]rx(1)

[2] = rx by (1.10).

The following theorem from Lu [26] was applied by Kadison in [20] to recover
a Hopf algebroid structure on the smash product AB#H, starting from a
finite dimensional Hopf algebra H over a field K and a right H-Galois exten-
sion A of B.

Theorem 4.2.9 ([26]) Let H be a finite dimensional Hopf algebra over a
field K with antipode S, and let D(H) = H∗ ./ H be its Drinfeld double.
Let A be a left D(H)-module algebra and assume that the R-matrix R =
R1 ⊗R2 of D(H) acts on A such that

(R2 · y)(R1 · x) = xy

for x, y ∈ A. Then there is a Hopf algebroid structure over A on the smash
product algebra A#H and the structure maps are given by

s(a) = a⊗ 1

t(a) =
∑

(h∗i · a)⊗ hi
∆(a⊗ h) = a⊗ h(1) ⊗ 1⊗ h(2)

ε(a⊗ h) = ε(h)a

ς(a⊗ h) =
∑

(1⊗ S(h))t((S2(hi)h
∗
i ) · a)

where (hi) is a basis of H with dual basis (h∗i ) of H∗, and the R-matrix of
D(H) is R =

∑
(1⊗ hi)⊗ (h∗i ⊗ 1).

As we observe immediately, the condition in Lu’s theorem (R2 ·y)(R1 ·x) = xy
for x, y ∈ A, means that A is a commutative algebra in the category D(H)M
of left D(H)-modules, since the category D(H)M is monoidal and braided
with the braiding given by

σ : M ⊗N −→ N ⊗M , m⊗ n 7→ R2 · n⊗R1 ·m .
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We know from [28] that in case the Hopf algebra H has finite dimension over
a field K, there is a category equivalence

D(H)M∼= HYDH ,

where a left D(H)-module M becomes a left H-module by the restricted ac-
tion ofH ⊂ D(H), and a rightHop-comodule via the action ofH∗cop ⊂ D(H),
since H∗cop ∼= Hop∗ and Hop∗M ∼= MHop

. So we have the relation f · m =
m(0)f(m(1)) for the action of f ∈ H∗, if m(0) ⊗m(1) denotes the induced H-
comodule structure. The left H-module and right H-comodule structure are
such that the compatibility condition for left-right Yetter-Drinfeld modules
is satisfied. The commutativity condition translates to

mn = (R2 · n)(R1 ·m)

=
∑

(h∗i · n)(hi �m)

=
∑

n(0)h
∗
i (n(1))(hi �m)

= n(0)(n(1) �m)

for m,n ∈M .

Let H be a Hopf algebra with invertible antipode. Then the category HYDH
of left-right Yetter-Drinfeld modules is monoidal and braided as follows: The
tensor product of two left-right Yetter-Drinfeld modules M,N ∈ HYDH be-
comes a Yetter-Drinfeld module via h� (m⊗ n) := h(1) �m⊗ h(2) � n and
δ(m ⊗ n) := m(0) ⊗ n(0) ⊗ n(1)m(1) for m ⊗ n ∈ M ⊗ N and h ∈ H. Note
that this comodule structure is the codiagonal structure with respect to the
coaction of Hop. The braiding in HYDH is induced by the braiding in the
category D(H)M and given by

σ : M ⊗N −→ N ⊗M , m⊗ n 7→ n(0) ⊗ n(1) �m .

Now let A be a left D(H)-module algebra. Then A is a left-right Yetter-
Drinfeld module, such that the two equivalent conditions

h(1) � a(0) ⊗ h(2)a(1) = (h(2) � a)(0) ⊗ (h(2) � a)(1)h(1) (4.1)

h(2) � a(0) ⊗ h(3)a(1)S
−1(h(1)) = (h� a)(0) ⊗ (h� a)(1) (4.2)

are satisfied for all a, b ∈ A. The compatibility of the algebra structure
with the D(H)-module structure means that, with respect to the induced
structures, A is a left H-module algebra and a right Hop-comodule algebra,
that is

h� (ab) = (h(1) � a)(h(2) � b) , h� 1 = ε(h)1
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and

δ(ab) = a(0)b(0) ⊗ b(1)a(1) , δ(1) = 1⊗ 1

for all a, b ∈ A and h ∈ H. Moreover, A is an algebra in the category HYDH ,
by the definition of the monoidal structure. Hence, the commutativity con-
dition

ab = ∇A ◦ σ(a⊗ b) = b(0)(b(1) � a) (4.3)

for all a, b ∈ A, says that A is a commutative algebra in the category HYDH .

Since the definition of Yetter-Drinfeld modules does neither require a finite
dimensional Hopf algebra H nor to be working over a field, we rather use the
language of Yetter-Drinfeld modules than that of modules over the Drinfeld
double. This allows us to drop the assumption that H be finite dimensional
and formulate a generalized version of Lu’s theorem.

We will use the following two lemmas for the proof:

Lemma 4.2.10 Let H be a Hopf algebra with invertible antipode S and let
A be a left H-module algebra with action � : H ⊗A −→ A. The the opposite
smash product algebra (A#H)op is isomorphic to the smash product algebra
Aop#Hop, where Aop becomes an Hop-module algebra by the action h I a :=
S−1(h) � a for a ∈ A and h ∈ H.

Proof. A direct calculation shows that the action I defines a left Hop-
module algebra structure on A. The map

φ : Aop#Hop −→ (A#H)op , a⊗ h 7→ h(1) � a⊗ h(2)

is bijective with inverse φ−1(a⊗ h) = h(1) I a⊗ h(2), since

φ−1 ◦ φ(a⊗ h) = φ−1(h(1) � a⊗ h(2))

= h(2) I (h(1) � a)⊗ h(3)

= (S−1(h(2))h(1)) � a⊗ h(3)

= r ⊗ h

and

φ ◦ φ−1(a⊗ h) = φ(h(1) I a⊗ h(2))

= h(2) � (S−1(h(1)) � a)⊗ h(3)

= (h(2)S
−1(h(1))) � a⊗ h(3)

= a⊗ h .
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It is an algebra morphism, since for a⊗ h, b⊗ g ∈ Aop#Hop

φ((a⊗ h) · (b⊗ g)) = φ((h(1) I b)a⊗ gh(2))

= g(1)h(2) � ((h(1) I b)a)⊗ g(2)h(3)

= (g(1)h(2)S
−1(h(1)) � b)(g(2)h(3) � a)⊗ g(3)h(4)

= (g(1) � b)(g(2)h(1) � a)⊗ g(3)h(2)

and

φ(a⊗ h) ·op φ(b⊗ g) = (g(1) � b⊗ g(2))(h(1) � a⊗ h(2))

= (g(1) � b)(g(2) � (h(1) � a))⊗ g(3)h(2)

= (g(1) � b)(g(2)h(1) � a)⊗ g(3)h(2) .

2

Lemma 4.2.11 Let H be a Hopf algebra with invertible antipode S and let A
be a commutative algebra in the category HYDH of Yetter-Drinfeld modules.
Then the map

ψ : A#H −→ Aop#Hop , a⊗ h 7→ a(0) ⊗ S(S(a(1))h)

is an algebra isomorphism with inverse ψ−1 : Aop#Hop −→ A#H , a⊗ h 7→
a(0) ⊗ a(1)S

−1(h).

Proof. It is quite obvious that the given maps are inverse to each other.
Let a⊗h, b⊗ g ∈ A#H. Then, using the Yetter-Drinfeld condition (4.2), we
have

ψ((a⊗ h)(b⊗ g)) = ψ(a(h(1) � b)⊗ h(2)g)

= (a(h(1) � b))(0) ⊗ S(S((a(h(1) � b))(1))h(2)g)

= a(0)(h(1) � b)(0) ⊗ S(S((h(1) � b)(1)a(1))h(2)g)

= a(0)(h(2) � b(0))⊗ S(S(h(3)b(1)S
−1(h(1))a(1))h(4)g)

= a(0)(h(2) � b(0))⊗ S(S(a(1))h(1)S(b(1))g) .

The inverse of the braiding in the category HYDH is given by

σ−1 : M ⊗N −→ N ⊗M , m⊗ n 7→ S(m(1)) � n⊗m(0) ,

and we obtain ∇A = ∇A◦σ◦σ−1 = ∇A◦σ−1 from the commutativity relation
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(4.3), that is, ab = (S(a(1)) � b)a(0) for all a, b ∈ A. Now we have

ψ(a⊗ h) · ψ(b⊗ g) =

= (a(0) ⊗ S(S(a(1))h)) · (b(0) ⊗ S(S(b(1))g))

= a(0) · (S(S(a(1))h)(1) I b(0))⊗ S(S(a(1))h)(2) · S(S(b(1))g)

= (S(a(1))(2)h(2) � b(0))a(0) ⊗ S(S(b(1))g)S(S(a(1))(1)h(1))

= S(a(1)) � (h(2) � b(0))a(0) ⊗ S(S(a(2))h(1)S(b(1))g)

= a(0)(h(2) � b(0))⊗ S(S(a(1))h(1)S(b(1))g) ,

which shows that ψ is in fact an algebra homomorphism. 2

The following generalizes Lu’s Theorem 4.2.9 to the case of an arbitrary Hopf
algebra:

Theorem 4.2.12 Let H be a Hopf algebra with invertible antipode S and
let A be a commutative algebra in the category HYDH of left-right Yetter-
Drinfeld modules.
Then there is a Hopf algebroid structure over A on the smash product algebra
A#H and the structure maps are given by

s(a) = a⊗ 1

t(a) = a(0) ⊗ a(1)

∆(a⊗ h) = a⊗ h(1) ⊗ 1⊗ h(2)

ε(a⊗ h) = ε(h)a

ς(a⊗ h) = S(S(a(1))h)(1) � a(0) ⊗ S(S(a(1))h)(2)

Proof. Assuming that H is still finite dimensional as in Lu’s theorem, we
can determine the structure morphisms of A#H with respect to the induced
H-comodule structure on A. In particular, we get

t(a) =
∑

(h∗i · a)⊗ hi =
∑

a(0)h
∗
i (a(1))⊗ hi = a(0) ⊗ a(1) ,

and determine the antipode as

ς(a⊗ h) =
∑

(1⊗ S(h))t((S2(hi)h
∗
i ) · a)

=
∑

(1⊗ S(h)) t(S2(hi) � (a(0)h
∗
i (a(1))))

= (1⊗ S(h)) t(S2(a(1)) � a(0))

= (1⊗ S(h))((S2(a(1)) � a(0))(0) ⊗ (S2(a(1)) � a(0))(1)) .
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The inverse of the antipode constructed in the proof of Lu’s theorem in [26]
is given by

ς−1(a⊗ h) = (1⊗ S−1(h))t(a)

= (1⊗ S−1(h))(a(0) ⊗ a(1))

= S−1(h)(1) � a(0) ⊗ S−1(h)(2)a(1) .

We claim that the structure morphisms stated above make A#H into a Hopf
algebroid if A is a commutative algebra in the category HYDH . So we first
check that the axioms in Definition 4.1.5 hold.
Clearly, s : A −→ A#H is an algebra homomorphism. The target map t is
an algebra homomorphism t : Aop −→ A#H, since

t(a)t(b) = (a(0) ⊗ a(1))(b(0) ⊗ b(1))

= a(0)(a(1) � b(0))⊗ a(2)b(1)

= b(0)a(0) ⊗ a(1)b(1)

= (ba)(0) ⊗ (ba)(1)

= t(ba)

for a, b ∈ A by the commutativity property (4.3). Similarly, we see that the
images of s and t commute:

t(a)s(b) = (a(0) ⊗ a(1))(b⊗ 1)

= a(0)(a(1) � b)⊗ a(2)

= ba(0) ⊗ a(1)

= (b⊗ 1)(a(0) ⊗ a(1))

= s(b)t(a) .

Hence, the source and target map induce an A-bimodule structure on A#H,
that is given by

b · (a⊗ h) · b′ = s(b)t(b′)(a⊗ h)

= (bb′(0) ⊗ b′(1))(a⊗ h)

= bb′(0)(b
′
(1) � a)⊗ b′(2)h

= bab′(0) ⊗ b′(1)h .

We see immediately that ∆ and ε make A#H into an A-coring, and so it
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remains to check the identities. Using (4.1), we get

∆(a⊗ h)(1⊗ 1⊗ s(b)) = (a⊗ h(1) ⊗ 1⊗ h(2))(1⊗ 1⊗ b⊗ 1)

= a⊗ h(1) ⊗ h(2) � b⊗ h(3)

= (a⊗ h(1))⊗A (h(2) � b) · (1⊗ h(3))

= (a⊗ h(1)) · (h(2) � b)⊗A (1⊗ h(3))

= a(h(2) � b)(0) ⊗ (h(2) � b)(1)h(1) ⊗ 1⊗ h(3)

= a(h(1) � b(0))⊗ h(2)b(1) ⊗ 1⊗ h(3)

= (a⊗ h(1) ⊗ 1⊗ h(2))(b(0) ⊗ b(1) ⊗ 1⊗ 1)

= ∆(a⊗ h)(t(b)⊗ 1⊗ 1) .

The remaining identities are straightforward. The formula for the antipode
can be simplified further using the Yetter-Drinfeld condition (4.2):

ς(a⊗ h) = (1⊗ S(h))((S2(a(1)) � a(0))(0) ⊗ (S2(a(1)) � a(0))(1))

= (1⊗ S(h))(S2(a(2))(2) � a(0) ⊗ S2(a(2))(3)a(1)S
−1(S2(a(2))(1))

= (1⊗ S(h))(S2(a(3)) � a(0) ⊗ S2(a(4))a(1)S(a(2)))

= (1⊗ S(h))(S2(a(1)) � a(0) ⊗ S2(a(2)))

= S(h)(1) � (S2(a(1)) � a(0))⊗ S(h)(2)S
2(a(2))

= S(h(2))S
2(a(1)) � a(0) ⊗ S(h(1))S

2(a(2))

= S(S(a(1))h)(1) � a(0) ⊗ S(S(a(1))h)(2) .

We have to show that ς satisfies the axioms of an antipode in Definition 4.1.9.
In order to verify that ς : A#H −→ (A#H)op is an algebra morphism, we
observe that the diagram

A#H (A#H)op-ς

Aop#Hop

ψ

@
@
@
@@R

φ

�
�
�
���

commutes, where φ is the algebra morphism from Lemma 4.2.10, and ψ
is given in Lemma 4.2.11. So since ς is the composition of two algebra
morphisms φ ◦ ψ(a ⊗ h) = φ(a(0) ⊗ S(S(a(1))h)) = S(S(a(1))h)(1) � a(0) ⊗
S(S(a(1))h)(2) = ς(a ⊗ h), it is an algebra homomorphism itself. Since both



114 Chapter 4. Bialgebroids and Hopf Algebroids for B-Torsors

φ and ψ are isomorphisms, we receive an inverse for ς by

ς−1(a⊗ h) = ψ−1 ◦ φ−1(a⊗ h)

= ψ−1(S−1(h(1)) � a⊗ h(2))

= (S−1(h(1)) � a)(0) ⊗ (S−1(h(1)) � a)(1)S
−1(h(2))

= (S−1(h)(2) � a)(0) ⊗ (S−1(h)(2) � a)(1)S
−1(h)(1)

= S−1(h)(1) � a(0) ⊗ S−1(h)(2)a(1) ,

where we used (4.1). This is the same formula as in Lu’s theorem.

Finally, we check that ς satisfies the properties in Definition 4.1.9. We have
for a ∈ A

ς ◦ t(a) = ς(a(0) ⊗ a(1))

= S(S(a(1))a(2))(1) � a(0) ⊗ S(S(a(1))a(2))(2)

= a⊗ 1

= s(a) .

By the Yetter-Drinfeld condition (4.2) we compute for a⊗ h ∈ A#H

t ◦ ε ◦ ς(a⊗ h) =

= t(S(S(a(1))h) � a(0))

= (S(S(a(1))h) � a(0))(0) ⊗ (S(S(a(1))h) � a(0))(1)

= S(S(a(2))h)(2) � a(0) ⊗ S(S(a(2))h)(3)a(1)S
−1(S(S(a(2))h)(1))

= S((S(a(2))h)(2)) � a(0) ⊗ S((S(a(2))h)(1))a(1)(S(a(2))h)(3)

= S(S(a(3))h(2)) � a(0) ⊗ S(S(a(4))h(1))a(1)S(a(2))h(3)

= S(S(a(1))h(2)) � a(0) ⊗ S(S(a(2))h(1))h(3)

= S(S(a(1))h(1))(1) � a(0) ⊗ S(S(a(1))h(1))(2)h(2)

= ∇A#H(S(S(a(1))h(1))(1) � a(0) ⊗ S(S(a(1))h(1))(2) ⊗ 1⊗ h(2))

= ∇A#H(ς ⊗ id)(a⊗ h(1) ⊗ 1⊗ h(2))

= ∇A#H ◦ (ς ⊗ id) ◦∆(a⊗ h) ,

which is the second property. The map

γ : A#H ⊗ A#H −→ A#H ⊗ A#H , a⊗ h⊗ b⊗ g 7→ ab(0) ⊗ b(1)h⊗ 1⊗ g
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factors over the quotient A#H ⊗A A#H, since for all x ∈ A

γ((a⊗ h) · x⊗ (b⊗ g)) = γ(ax(0) ⊗ x(1)h⊗ b⊗ g)

= ax(0)b(0) ⊗ b(1)x(1)h⊗ 1⊗ g
= a(xb)(0) ⊗ (xb)(1)h⊗ 1⊗ g
= γ(a⊗ h⊗ xb⊗ g)

= γ(a⊗ h⊗ x · (b⊗ g)) .

The factorization γ̄ : A#H ⊗A A#H −→ A#H ⊗ A#H is a section for the
projection π : A#H ⊗ A#H −→ A#H ⊗A A#H, since

π ◦ γ̄(a⊗ h⊗ b⊗ g) = π(ab(0) ⊗ b(1)h⊗ 1⊗ g)

= π((a⊗ h) · b⊗ 1⊗ g)

= a⊗ h⊗ b⊗ g .

Now

∇A#H(id⊗ς)γ̄∆(a⊗ h) = ∇A#H(id⊗ς)(a⊗ h(1) ⊗ 1⊗ h(2))

= ∇A#H(a⊗ h(1) ⊗ 1⊗ S(h(2))

= a⊗ h(1)S(h(2))

= a⊗ ε(h)1

= s ◦ ε(a⊗ h) ,

which finishes the proof. 2

We return to the case of a B-torsor T and the left TB-bialgebroid TB#Hop

arising from it. It turns out that, due to TB being a commutative Yetter-
Drinfeld algebra in YDHH , the bialgebroid TB#Hop is actually a Hopf alge-
broid.

Theorem 4.2.13 Let T be a B-torsor and assume that the Hopf algebra H,
that coacts on T by Theorem 4.2.2, has an invertible antipode S.
Then there exists an antipode for the bialgebroid TB#Hop and it is given by
the formula

ς(r ⊗ h) := S−1(hS−1(r(1)))(1) � r(0) ⊗ S−1(hS−1(r(1)))(2) ,

where � : Hop⊗TB −→ TB , h�r := h[1]rh[2] is the Miyashita-Ulbrich action
of Hop on TB.

The associated morphism ϑ : TB −→ TB from Proposition 4.1.11 is given by

ϑ(r) = S−2(r(1)) � r(0) = S−2(r(1))
[1]r(0)S

−2(r(1))
[2] .
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Proof. We note that S−1 is the antipode for the opposite bialgebra Hop.
We have seen in Section 1.2 that TB is a commutative algebra in the cat-
egory YDHH of Yetter-Drinfeld modules, where the right H-comodule struc-
ture is given as the restriction of the right H-comodule structure on T and
the right H-module structure is the Miyashita-Ulbrich action. It is easy to
see that a right-right H-Yetter-Drinfeld module satisfies the left-right Hop-
Yetter-Drinfeld condition (4.1) with respect to the correspondingHop-module
and comodule structure. This implies that TB is an algebra in the category

HopYDHop
, and is moreover commutative by commutativity of TB in YDHH .

Hence, TB and Hop satisfy the conditions of the previous theorem. The re-
sulting bialgebroid structure on TB#Hop is the same as the one constructed
in Proposition 4.2.7.
With respect to the opposite multiplication in Hop, the formula for the an-
tipode yields

ς(r ⊗ h) = S−1(hS−1(r(1)))(1) � r(0) ⊗ S−1(hS−1(r(1)))(2)

for r ⊗ h ∈ TB#Hop. The map ϑ can now be computed via the formula in
Proposition 4.1.11 as

ϑ(r) = ε ◦ ς ◦ s(r)
= ε ◦ ς(r ⊗ 1)

= ε(S−2(r(1)) � r(0) ⊗ S−2(r(2)))

= (S−2(r(1)) � r(0))εH(S−2(r(2)))

= S−2(r(1)) � r(0)

= S−2(r(1))
[1]r(0)S

−2(r(1))
[2] .

2

Proposition 4.2.14 The antipode ς of the Hopf algebroid TB#Hop has the
inverse

ς−1 : TB#Hop −→ TB#Hop , r ⊗ h 7→ S(h(2)) � r(0) ⊗ r(1)S(h(1)) .

The inverse for the underlying morphism ϑ : TB −→ TB is given by

ϑ−1 : TB −→ TB , r 7→ S(r(1)) � r(0) = S(r(1))
[1]r(0)S(r(1))

[2] .

Proof. The inverse of ς was computed in the proof of Theorem 4.2.12, and
a straightforward computation shows that the inverse of ϑ is given by the
second map. 2
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Remark 4.2.15 In Proposition 4.1.11 the underlying map ϑ of the antipode
ς is defined via the property t ◦ ϑ = ς ◦ s.
Applying this on the source map s(r) = r ⊗ 1 and target map t(r) = r(0) ⊗
r(1) = δ(r) of TB#Hop that we determined in Proposition 4.2.7, we obtain
the equality

ϑ(r)(0) ⊗ ϑ(r)(1) = ϑ(r(0))⊗ S−2(r(1))

for all r ∈ TB.

We note that the formula for ϑ in Theorem 4.2.12 equals the formula (1.22)
for the inverse of the Grunspan map θ of a quantum torsor, i.e. in the case
B = k. Since the Miyashita-Ulbrich action, and therefore also this formula, is
really just well-defined on the centralizer TB (this is due to h[1]⊗h[2] ∈ T⊗BT
for all h ∈ H), we cannot expect to have such a map defined on the whole of
T . Nevertheless, we will see that the map θ : TB −→ TB interacts in a Hopf
algebroid structure for the bialgebroid ((T ⊗B T )B)op. This connection can
then be used to give a new interpretation for the axioms of the Grunspan
map.

We continue recovering some more Hopf algebroid structures:

By Lemma 4.2.10, there exists an algebra isomorphism φ between the oppo-
site algebra (TB#Hop)op and the smash product algebra (TB)op#H, where
(TB)op becomes a left H-module algebra by

h I r := S(h) � r = S(h)[1]rS(h)[2]

(here we have to use that the antipode of Hop is given by S−1).
Moreover, defining a right H-comodule structure on (TB)op by

δ(t) = t<0> ⊗ t<1> := t(0) ⊗ S−2(t(1)) ,

we receive a smash product algebra structure of the type considered in The-
orem 4.2.12 and hence a Hopf algebroid structure on (TB)op#H:

Proposition 4.2.16 The smash product algebra (TB)op#H is a left Hopf
algebroid over (TB)op with the structure maps

s(r) = r ⊗ 1

t(r) = r(0) ⊗ S−2(r(1))

∆(r ⊗ h) = r ⊗ h(1) ⊗ 1⊗ h(2)

ε(r ⊗ h) = ε(h)r

ς(r ⊗ h) = S(S(h(2))r(1)) � r(0) ⊗ S(h(1))r(2)
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Proof. We have to show that (TB)op is a commutative algebra in the cate-
gory HYDH . It satisfies the left-right Yetter-Drinfeld condition

h(1) I r<0> ⊗ h(2)r<1> = (h(2) I r)<0> ⊗ (h(2) I r)<1>h(1)

for h ∈ H and r ∈ (TB)op, since

(h(2) I r)<0> ⊗ (h(2) I r)<1>h(1) =

= (S(h(2)) � r)(0) ⊗ S−2((S(h(2)) � r)(1))h(1)

= S(h(2))
[1]

(0)
r(0)S(h(2))

[2]
(0)
⊗ S−2(S(h(2))

[1]
(1)
r(1)S(h(2))

[2]
(1)

)h(1)

= S(h(2))(2)
[1]r(0)S(h(2))(2)

[2] ⊗ S−2(S(S(h(2))(1))r(1)S(h(2))(3))h(1)

= S(h(3))
[1]r(0)S(h(3))

[2] ⊗ S−2(S2(h(4))r(1)S(h(2)))h(1)

= S(h(3)) � r(0) ⊗ h(4)S
−2(r(1))S

−1(h(2))h(1)

= h(1) I r(0) ⊗ h(2)S
−2(r(1))

= h(1) I r<0> ⊗ h(2)r<1>

by (1.4) and (1.5), and it is obvious that (TB)op is an algebra in HYDH . As
we have already verified in the proof of Theorem 4.2.13, TB is a commutative
algebra in the category of Yetter-Drinfeld modules, and hence rs = s(0)(s(1)�

r) for all r, s ∈ TB. This implies commutativity of (TB)op in HYDH , since

s<0> · (s<1> I r) = (S−2(s(1)) I r)s(0)

= (S−1(s(1)) � r)s(0)

= s(0)(s(1) � (S−1(s(2)) � r))

= s(0)(S
−1(s(2))s(1) � r)

= sr

= r · s

for all r, s ∈ (TB)op. Now we can apply Theorem 4.2.13 to obtain the struc-
ture morphisms for the Hopf algebroid (TB)op#H as stated above. In par-
ticular, the antipode is given by

ς(r ⊗ h) = S(S(r<1>)h)(1) I r<0> ⊗ S(S(r<1>)h)(2)

= S(S(S−2(r(1)))h)(1) I r(0) ⊗ S(S(S−2(r(1)))h)(2)

= S(S−1(r(1))h)(1) I r(0) ⊗ S(S−1(r(1))h)(2)

= S(S(h(2))r(1)) � r(0) ⊗ S(h(1))r(2) .

2
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Now we can use the isomorphism

φ : (TB)op#H −→ (TB#Hop)op , r ⊗ h 7→ h(1) � r ⊗ h(2)

from Lemma 4.2.10 to transfer the left (TB)op-bialgebroid structure on
(TB)op#H to the opposite algebra (TB#Hop)op, making it a left (TB)op-
bialgebroid.
This yields a structure which is different from the canonical right TB-bial-
gebroid structure on (TB#Hop)op that is imposed by Remark 4.1.7.

Proposition 4.2.17 The isomorphism φ induces a left (TB)op-bialgebroid
structure on the opposite algebra (TB#Hop)op with the structure maps

• source map s̃(r) = r ⊗ 1

• target map t̃(r) = S−2(r(1)) � r(0) ⊗ S−2(r(2))

• comultiplication ∆̃(r ⊗ h) = r ⊗ h(1) ⊗ 1⊗ h(2)

• counit ε̃(r ⊗ h) = S(h) � r

We are going to denote this bialgebroid by op(TB#Hop).

Proof. We apply the isomorphism φ on the structure morphisms of
(TB)op#H that we computed in Proposition 4.2.16, and obtain the source
map as

s̃(r) = φ ◦ s(r) = φ(r ⊗ 1) = r ⊗ 1 ,

and the target map as

t̃(r) = φ ◦ t(r) = φ(r(0) ⊗ S−2(r(1)))

= S−2(r(1))(1) � r(0) ⊗ S−2(r(1))(2)

= S−2(r(1)) � r(0) ⊗ S−2(r(2))

for r ∈ (TB)op. As in the proof of Proposition 4.2.7, we get the comonoid
structure maps for r ⊗ h ∈ (TB#Hop)op by

∆̃(r ⊗ h) = (φ⊗TB φ)∆φ−1(r ⊗ h)

= (φ⊗TB φ)∆(h(1) I r ⊗ h(2))

= (φ⊗TB φ)(h(1) I r ⊗ h(2) ⊗ 1⊗ h(3))

= h(2) � (S(h(1) � r)⊗ h(2) ⊗ h(4) � 1⊗ h(5)

= S(h(1))h(2) � r ⊗ h(3) ⊗ 1⊗ h(4)

= r ⊗ h(1) ⊗ 1⊗ h(2)
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and

ε(r ⊗ h) = ε̃ ◦ φ−1(r ⊗ h)

= ε̃(h(1) I r ⊗ h(2))

= εH(h(2))h(1) I r

= S(h) � r .

2

Recall from Remark 4.1.3 how one can construct to a ×A-bialgebra L its
coopposite ×Ā-bialgebra Lcop. In the language of bialgebroids this means
that given a left A-bialgebroid L, we obtain the coopposite left Aop-bialge-
broid Lcop by interchanging the source and the target map and composing
the comultiplication with a twist.
We apply this construction to the left (TB)op-bialgebroid op(TB#Hop):

Corollary 4.2.18 The coopposite left bialgebroid op(TB#Hop)
cop

over TB

has the structure maps

• source map sopcop(r) = S−2(r(1)) � r(0) ⊗ S−2(r(2))

• target map topcop(r) = r ⊗ 1

• comultiplication ∆opcop(r ⊗ h) = 1⊗ h(2) ⊗ r ⊗ h(1)

• counit εopcop(r ⊗ h) = S(h) � r

Remark 4.2.19 The TB-bimodule structure on op(TB#Hop)
cop

that is in-
duced by the source resp. the target map is given by

x · (r ⊗ h) = sopcop(x) · (r ⊗ h) = (S−2(x(1)) � x(0) ⊗ S−2(x(2))) · (r ⊗ h)

= (r ⊗ h)(S−2(x(1)) � x(0) ⊗ S−2(x(2)))

= r(h(1) � S−2(x(1)) � x(0))⊗ S−2(x(2))h(2)

= r(S−2(x(1))h(1) � x(0))⊗ S−2(x(2))h(2)

and

(r ⊗ h) · x = topcop(x) · (r ⊗ h) = (x⊗ 1) · (r ⊗ h)

= (r ⊗ h)(x⊗ 1)

= r(h(1) � x)⊗ h(2)

for x ∈ TB and r ⊗ h ∈ TB#Hop.
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So far we have obtained a left TB-Hopf algebroid TB#Hop in Proposition
4.2.13, and a structure of left TB-bialgebroid on its opposite algebra, namely
the bialgebroid op(TB#Hop)

cop
of the previous corollary. Our next result

shows that the antipode ς of TB#Hop has a property that generalizes in a
certain sense a well-known fact for Hopf algebras: It is a bialgebroid mor-
phism from TB#Hop to op(TB#Hop)

cop
. This is consistent with the fact that

ς is by definition an algebra anti-morphism.

We need the following lemma for the proof:

Lemma 4.2.20 Let x⊗ y ∈ (T ⊗B T )B. Then

S−2(x(1))
[1]x(0) ⊗ yS−2(r(1))

[2] ∈ B ⊗B T ⊂ T ⊗B T .

In particular, we have S−2(r(1))
[1]r(0) ⊗ S−2(r(1))

[2] ∈ B ⊗B T for r ∈ TB.

Proof. We note that the expression is well-defined by faithful flatness of
(T ⊗B T )B. Applying the H-comodule structure map to the left tensorand,
we obtain by (1.5) that

(δ ⊗B id)(S−2(x(1))
[1]x(0) ⊗B yS−2(x(1))

[2]) =

= S−2(x(2))
[1]

(0)
x(0) ⊗ S−2(x(2))

[1]
(1)
x(1) ⊗B yS−2(x(2))

[2]

= S−2(x(3))
[1]x(0) ⊗ S−1(x(2))x(1) ⊗B yS−2(x(3))

[2]

= S−2(x(1))
[1]x(0) ⊗ 1⊗B yS−2(x(1))

[2]

∈ (T ⊗H)⊗B T ⊂ T ⊗B T .

Since T is a faithfully flat right B-module and T coH = B, we conclude that
S−2(x(1))

[1]x(0) ⊗ yS−2(x(1))
[2] ∈ B ⊗B T . 2

Proposition 4.2.21 The antipode of the Hopf algebroid TB#Hop is a bial-
gebroid morphism

ς : TB#Hop −→ op(TB#Hop)
cop

r ⊗ h 7→ S−1(hS−1(r(1)))(1) � r(0) ⊗ S−1(hS−1(r(1)))(2) .

Proof. By Definition 4.1.8 we have to show that ς is a TB-bimodule mor-
phism that is compatible with both comonoid structures. With respect to
the bimodule structures described in Remark 4.2.8 resp. 4.2.19, we obtain
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for x ∈ TB and r ⊗ h ∈ TB#Hop

x · ς(r ⊗ h) =

= (S−1(hS−1(r(1)))(1) � r(0))(S
−2(x(1))S

−1(hS−1(r(1)))(2) � x(0))⊗
⊗ S−2(x(2))S

−1(hS−1(r(1)))(3) =

= S−1(hS−1(r(1)))(1) � (r(0)(S
−2(x(1)) � x(0)))⊗
⊗ S−2(x(2))S

−1(hS−1(r(1)))(2) =

= S−1(hS−1(r(1)))(1) � (r(0)S
−2(x(1))

[1]
x(0)S

−2(x(1))
[2])⊗

⊗ S−2(x(2))S
−1(hS−1(r(1)))(2) =

= S−1(hS−1(r(1)))(1) � (S−2(x(1))
[1]
x(0)r(0)S

−2(x(1))
[2])⊗

⊗ S−2(x(2))S
−1(hS−1(r(1)))(2) =

= S−2(x(1))S
−1(hS−1(r(1)))(1) � (x(0)r(0))⊗ S−2(x(2))S

−1(hS−1(r(1)))(2) =

= S−1(hS−1(x(1)r(1)))(1) � (x(0)r(0))⊗ S−1(hS−1(x(1)r(1)))(2) =

= S−1(hS−1((xr)(1)))(1) � (xr)(0) ⊗ S−1(hS−1((xr)(1)))(2) =

= ς(xr ⊗ h) = ς(x · (r ⊗ h)) ,

using Lemma 4.2.20 for the fourth equality. Letting x ∈ TB act on the right,
we have

ς((r ⊗ h) · x) = S(rx(0) ⊗ hx(1))) =

= S−1(hx(2)S
−1(r(1)x(1)))(1) � r(0)x(0) ⊗ S−1(hx(2)S

−1(r(1)x(1)))(2)

= S−1(hS−1(r(1)))(1) � r(0)x⊗ S−1(hS−1(r(1)))(2)

= (S−1(hS−1(r(1)))(1) � r(0))(S
−1(hS−1(r(1)))(2) � x)⊗ S−1(hS−1(r(1)))(3)

= ς(r ⊗ h) · x .

This shows that ς is a morphism of TB-bimodules. Finally, we prove com-
patibility of ς with the comonoid structures of TB#Hop and op(TB#Hop)

cop
.

We have

εopcop ◦ ς(r ⊗ h) = S(S−1(hS−1(r(1)))(2)) � S−1(hS−1(r(1)))(1) � r(0)

= (S−1(hS−1(r(1)))(1)S(S−1(hS−1(r(1)))(2))) � r(0)

= ε(hS−1(r(1)))r(0)

= ε(h)r

= ε(r ⊗ h)
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and

(ς ⊗TB ς)∆(r ⊗ h) = (ς ⊗TB ς)(r ⊗ h(1) ⊗ 1⊗ h(2)) =

= ς(r ⊗ h(1))⊗ 1⊗ S−1(h(2)) =

= S−1(h(1)S
−1(r(1)))(1) � r(0) ⊗ S−1(h(1)S

−1(r(1)))(2) ⊗ 1⊗ S−1(h(2)) =

= (1⊗ S−1(h(1)S
−1(r(1)))) · r(0) ⊗ 1⊗ S−1(h(2)) =

= 1⊗ S−1(h(1)S
−1(r(1)))⊗ r(0) · (1⊗ S−1(h(2))) =

= 1⊗ S−1(h(1)S
−1(r(3)))⊗ S−2(r(1))S

−1(h(2))(1) � r(0)⊗
⊗ S−2(r(2))S

−1(h(2))(2) =

= 1⊗ S−1(h(1)S
−1(r(3)))⊗ S−1(h(3)S

−1(r(1))) � r(0) ⊗ S−1(h(2)S
−1(r(2))) =

= 1⊗ S−1(hS−1(r(1)))(3) ⊗ S−1(hS−1(r(1)))(1) � r(0) ⊗ S−1(hS−1(r(1)))(2) =

= ∆opcop ◦ ς(r ⊗ h) .

This proves the claim. 2

We could now expect the antipode ς to be also an antipode for the bialgebroid
op(TB#Hop)

cop
. But although it is easy to show that ς, considered as a

map ς : op(TB#Hop)
cop −→ op(TB#Hop)

cop
, satisfies the first two axioms

in Definition 4.1.9, there seems to be no good candidate for a section γ :
op(TB#Hop)

cop ⊗TB op(TB#Hop)
cop −→ op(TB#Hop)

cop ⊗ op(TB#Hop)
cop

of
the canonical projection such that the third property would hold.

Nevertheless, we can now return to the left TB-bialgebroid ((T ⊗B T )B)op

that is isomorphic to TB#Hop via the Galois map β. The antipode ς of
TB#Hop can be transfered back to ((T ⊗B T )B)op as follows:

Proposition 4.2.22 The left TB-bialgebroid ((T ⊗B T )B)op is a Hopf alge-
broid with the antipode given by the algebra morphism

ς̄ : ((T ⊗B T )B)op −→ (T ⊗B T )B , x⊗ y 7→ S−2(x(1))
[1]x(0)y ⊗ S−2(x(1))

[2] .

The underlying map of the antipode ς is given by

ϑ̄ : TB −→ TB , r 7→ S−2(r(1))
[1]r(0)S

−2(r(1))
[2] = ϑ(r) .

Proof. Since the bialgebroid structure of TB#Hop was constructed such
that the Galois map β became a bialgebroid morphism, we obtain an antipode
ς̄ for ((T ⊗B T )B)op such that the diagram

((T ⊗B T )B)op TB#Hop-β

(T ⊗B T )B
?

ς̄

(TB#Hop)op-
β

?

ς
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commutes. Hence, we can calculate ς̄ for x⊗ y ∈ ((T ⊗B T )B)op as

β−1 ◦ ς ◦ β(x⊗ y) = β−1 ◦ ς(xy(0) ⊗ y(1)) =

= β−1(S−1(y(2)S
−1(x(1)y(1)))(1) � x(0)y(0) ⊗ S−1(y(2)S

−1(x(1)y(1)))(2)) =

= β−1(S−2(x(1))(1) � x(0)y ⊗ S−2(x(1))(2)) =

= (S−2(x(1))(1) � x(0)y)S−2(x(1))(2)
[1] ⊗ S−2(x(1))(2)

[2]
=

= S−2(x(1))(1)
[1]
x(0)yS

−2(x(1))(1)
[2]
S−2(x(1))(2)

[1] ⊗ S−2(x(1))(2)
[2]

=

= S−2(x(1))
[1]x(0)y ⊗ S−2(x(1))

[2]

using (1.9). Since β is an isomorphism of bialgebroids, it is clear that ς̄
should satisfy the axioms of an antipode. The first two axioms can be easily
checked by

(ς̄ ◦ t)(r) = ς̄(1⊗ r) = r ⊗ 1 = s(r)

for all r ∈ TB, and

∇op(ς̄ ⊗ id)∆(x⊗ y) = ∇op(ς̄ ⊗ id)(x⊗ y(1) ⊗ y(2) ⊗ y(3))

= ∇op(S−2(x(1))
[1]x(0)y

(1) ⊗ S−2(x(1))
[2] ⊗ y(2) ⊗ y(3))

= S−2(x(1))
[1]x(0)y

(1)y(2) ⊗ y(3)S−2(x(1))
[2]

= S−2(x(1))
[1]x(0) ⊗ yS−2(x(1))

[2]

= 1⊗ S−2(x(1))
[1]x(0)yS

−2(x(1))
[2]

= t(S−2(x(1))
[1]x(0)yS

−2(x(1))
[2])

= (t ◦ ε ◦ ς̄)(x⊗ y)

for all x⊗ y ∈ ((T ⊗B T )B)op by Lemma 4.2.20.
A section for the canonical projection ((T ⊗B T )B)op ⊗ ((T ⊗B T )B)op −→
((T ⊗B T )B)op⊗TB ((T ⊗B T )B)op is given by γ(x⊗y⊗v⊗w) := x⊗yvw(1)⊗
x(2) ⊗ w(3), and so we have

∇op(id⊗ς̄)γ∆(x⊗ y) = ∇op(id⊗ς̄)γ(x⊗ y(1) ⊗ y(2) ⊗ y(3))

= ∇op(id⊗ς̄)(x⊗ y(1)y(2)y(3)(1) ⊗ y(3)(2) ⊗ y(3)(3))

= ∇op(id⊗ς̄)(x⊗ y(1) ⊗ y(2) ⊗ y(3))

= ∇op(id⊗ς̄)(x⊗ y(0) ⊗ y(1)
[1] ⊗ y(1)

[2])

= ∇op(x⊗ y(0) ⊗ S−2(y(1)
[1]

(1)
)[1]y(1)

[1]
(0)
y(1)

[2] ⊗ S−2(y(1)
[1]

(1)
)[2])

= xS−1(y(1))
[1]y(2)

[1]y(2)
[2] ⊗ S−1(y(1))

[2]y(0)

= xS−1(y(1))
[1] ⊗ S−1(y(1))

[2]y(0)

= xy ⊗ 1

= s ◦ ε(x⊗ y)
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by (1.5) and (1.11). So indeed, ((T ⊗B T )B)op is a left TB-Hopf algebroid. 2

This result shows that the coaction of a Hopf algebra on each B-torsor leads
to an antipode for the bialgebroid ((T ⊗B T )B)op.
We observe that the formula for the antipode ς̄ of ((T ⊗B T )B)op is such, that
applied to r ⊗ s ∈ (T ⊗B T )B with r, s ∈ TB, we have

ς̄(r ⊗ s) = S−2(r(1))
[1]r(0)s⊗ S−2(r(1))

[2]

= sS−2(r(1))
[1]r(0) ⊗ S−2(r(1))

[2]

= s⊗ S−2(r(1))
[1]r(0)S

−2(r(1))
[2]

= s⊗ ϑ(r)

by Lemma 4.2.20. So in this special case the expression (1.22) appears as a
part of the antipode ς̄. Moreover, this formula resembles very much the form
of the antipode for the Hopf algebra Hr(T ) of a quantum torsor T (in the
case B = k) in Theorem 1.4.5. We are going to investigate this relationship
in the following section.

4.3 Grunspan Axioms for B-Torsors

We keep the assumptions of the previous section and let T be a B-torsor
that is right faithfully flat over B and assume that (T ⊗B T )B is faithfully
flat over k.
In the previous section we have seen that the underlying map of both an-
tipodes ς for TB#Hop and ς̄ for ((T ⊗B T )B)op is given by ϑ : TB −→ TB.
This map has the same formula (1.22) as the inverse of the Grunspan map θ
for a quantum torsor. The reason why we obtained a formula for the inverse,
rather than of the Grunspan map (1.21) itself, was that we had to consider
the coaction of the opposite Hopf algebra Hop.
But it turns out that the formula (1.21) plays a role in a Hopf algebroid struc-
ture on the right TB-bialgebroid (T ⊗B T )B that we originally constructed
in Proposition 4.2.3.

Proposition 4.3.1 The right TB-bialgebroid (T ⊗B T )B that is associated
with each B-torsor by Proposition 4.2.3 is a right Hopf algebroid. Its antipode
is given by the algebra morphism

Θ : (T ⊗B T )B −→ ((T ⊗B T )B)op , x⊗ y 7→ S(y(1))
[1] ⊗ xy(0)S(y(1))

[2] ,
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where S is the antipode of the Hopf algebra H ⊂ (T ⊗B T )B from Theorem
4.2.2. The underlying map of the antipode Θ is

θ : TB −→ TB , r 7→ S(r(1))
[1]r(0)S(r(1))

[2] .

Proof. By the axioms in Definition 4.1.9 and the analogy between left
and right bialgebroids, it is clear that we should call (T ⊗B T )B a right
Hopf algebroid, if there exists an algebra anti-morphism Θ : (T ⊗B T )B −→
(T ⊗B T )B such that Θ ◦ t = s, ∇(id⊗Θ)∆ = t ◦ ε ◦ Θ and if there exists a
section γ : (T ⊗B T )B ⊗TB (T ⊗B T )B −→ (T ⊗B T )B ⊗ (T ⊗B T )B for the
canonical projection such that ∇(Θ⊗ id)γ∆ = s ◦ ε holds.
We note that the expression S(y(1))

[1] ⊗ xy(0)S(y(1))
[2] is well-defined. The

first property is obviously satisfied, and we obtain the second one as

∇(id⊗Θ)∆(x⊗ y) = ∇(id⊗Θ)(x⊗ y(1) ⊗ y(2) ⊗ y(2))

= ∇(x⊗ y(1) ⊗ S(y(3)
(1))

[1] ⊗ y(2)y(3)
(0)S(y(3)

(1))
[2])

= S(y(3)
(1))

[1]x⊗ y(1)y(2)y(3)
(0)S(y(3)

(1))
[2]

= S(y(1))
[1]x⊗ y(0)S(y(1))

[2]

= S(y(1))
[1]xy(0)S(y(1))

[2] ⊗ 1

= (t ◦ ε ◦ θ)(x⊗ y) ,

using that S(y(1))
[1]x⊗ y(0)S(y(1))

[2] ∈ T ⊗B B ⊂ T ⊗B T by a proof similar
to the one in Lemma 4.2.20.
A section γ : (T ⊗B T )B ⊗TB (T ⊗B T )B −→ (T ⊗B T )B ⊗ (T ⊗B T )B for the
canonical projection is given by γ(x⊗ y⊗ v⊗w) := x⊗ yvw(1)⊗w(2)⊗w(3),
and we have

∇(Θ⊗ id)γ∆(x⊗ y) = ∇(Θ⊗ id)(x⊗ y(1) ⊗ y(2) ⊗ y(3))

= ∇(S(y(1)
(1))

[1] ⊗ xy(1)
(0)S(y(1)

(1))
[2] ⊗ y(2) ⊗ y(3))

= y(2)S(y(1)
(1))

[1] ⊗ xy(1)
(0)S(y(1)

(1))
[2]y(3)

= y(2)
[1]S(y(1))

[1] ⊗ xy(0)S(y(1))
[2]y(2)

[2]

= (S(y(1))y(2))
[1] ⊗ xy(0)(S(y(1))y(2))

[2]

= 1⊗ xy
= s ◦ ε(x⊗ y) ,

which proves the claim. 2
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Remark 4.3.2 The map ς̄ : ((T ⊗B T )B)op −→ (T ⊗B T )B from Proposition
4.2.22 is inverse to the algebra morphism Θ. This follows from a straightfor-
ward calculation and is in accordance to the fact that the underlying maps
ϑ and θ are each other’s inverses. So we rename ς̄ =: Θ−1 and ϑ =: θ−1 for
the rest of this section.

In the special case B = k, the above proposition says that T op⊗ T is a Hopf
algebroid with the antipode

Θ(x⊗ y) = S(y(1))
[1]⊗ xy(0)S(y(1))

[2] = S(y(1))
[1]y(0)S(y(1))

[2]⊗ x = θ(y)⊗ x ,

for x, y ∈ T , using that S(y(1))
[1] ⊗ y(0)S(y(1))

[2] ∈ T ⊗ k ⊂ T ⊗ T by
[40]. The Grunspan map θ : T −→ T can be isolated from the antipode
as θ(x) = ε ◦Θ(1⊗ x).
We note that this yields a structure of Hopf algebroid on the canonical bial-
gebroid T ⊗T op that is different from the trivial Hopf algebroid structure on
T ⊗ T op we would obtain by Example 4.1.10.

We can now show that the properties of the Grunspan map in Definition
1.4.1 can be derived from the way the expression (1.22) interacts in the Hopf
algebroid structures that we recovered in the previous section.

Let T be a quantum torsor with torsor structure map µ : T −→ T ⊗ T op⊗ T .
We recall that the Grunspan map θ : T −→ T is an algebra map that satisfies
the two properties

(id⊗ id⊗θ ⊗ id⊗ id)(id⊗ id⊗µ)µ = (id⊗µop ⊗ id)µ (4.4)

(θ ⊗ θ ⊗ θ)µ = µ ◦ θ . (4.5)

The first equation can be understood better by expressing in in terms of the
inverse θ−1. We then have the conditions

t(1)⊗t(2)⊗t(3)(1)⊗t(3)(2)⊗t(3)(3) = t(1)⊗t(2)(3)⊗θ−1(t(2)(2))⊗t(2)(1)⊗t(3) (4.6)

θ−1(t(1))⊗ θ−1(t(2))⊗ θ−1(t(3)) = θ−1(t)(1) ⊗ θ−1(t)(2) ⊗ θ−1(t)(3) (4.7)

for all t ∈ T .

We claim that for a B-torsor T , the map Θ : (T ⊗B T )B −→ (T ⊗B T )B

resp. its inverse Θ−1 satisfies the equation

t(1) ⊗ t(2) ⊗ t(3)(1) ⊗ t(3)(2) ⊗ t(3)(3) = t(1) ⊗Θ−1(t(2)(2) ⊗ t(2)(3))⊗ t(2)(1) ⊗ t(3)

in T ⊗ (T ⊗B T )B ⊗ (T ⊗B T )B for all t ∈ T , and that

θ−1(r(1))⊗Θ−2(r(2) ⊗ r(3)) = θ−1(r)(1) ⊗ θ−1(r)(2) ⊗ θ−1(r)(3)
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in TB⊗ (T ⊗B T )B for all r ∈ TB. These are obviously generalizations of the
properties above, and indicate how they really arise in this context.

We gather some consequences of results in the previous section:

Remark 4.3.3 Commutativity of the diagram in the proof of Proposition
4.2.22 means that Θ−1 ◦ β−1 = β−1 ◦ ς, and so we can derive the equality

Θ−1(h[1] ⊗ h[2]) = S−2(h[1]
(1))

[1]h[1]
(0)h

[2] ⊗ S−2(h[1]
(1))

[2]

= S−1(h)[1] ⊗ S−1(h)[2]

in (T ⊗B T )B for all h ∈ Hop ⊂ ((T ⊗B T )B)op.

We moreover have the following implicit formula for the antipode of H:

Proposition 4.3.4 The antipode ς̄ = Θ−1 : ((T ⊗B T )B)op −→ (T ⊗B T )B of
the Hopf algebroid ((T ⊗B T )B)op restricts to the antipode of the Hopf algebra
Hop ⊂ ((T ⊗B T )B)op. That is

S−1(x⊗ y) = Θ−1(x⊗ y) = S−2(h[1]
(1))

[1]h[1]
(0)h

[2] ⊗ S−2(h[1]
(1))

[2]

for all x⊗ y ∈ Hop.

Proof. We use the fact that the restricted Galois map

β : ((T ⊗B T )B)op
∼=−→ TB#Hop , x⊗ y 7→ xy(1) ⊗ y(2) ⊗ y(3)

maps elements x⊗y ∈ Hop ⊂ ((T⊗BT )B)op to 1⊗x⊗y ∈ TB⊗Hop, as follows
from the definition of H = {x⊗y ∈ T ⊗B T | xy(1)⊗y(2)⊗y(3) = 1⊗x⊗y} in
Theorem 4.2.2. Then the commutative diagram in the proof of the previous
proposition yields for x⊗ y ∈ H

S−1(x⊗ y) = β−1(1⊗ S−1(x⊗ y))

= β−1 ◦ ς(1⊗ x⊗ y)

= β−1 ◦ ς(xy(1) ⊗ y(2) ⊗ y(3))

= β−1 ◦ ς ◦ β(x⊗ y)

= S−2(x(1))
[1]x(0)y ⊗ S−2(x(1))

[2] .

Now the claimed formula for the antipode of H is obvious. 2

Now we arrive at a proof of the first of the above equations. It can be seen
as an analogue of the property (4.6) for the general case of B-torsors:
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Proposition 4.3.5 Let T be a B-torsor with the torsor structure map
µ : T −→ T ⊗ (T ⊗B T )B , t 7→ t(1) ⊗ t(2) ⊗ t(3). Then the algebra mor-
phism

Θ−1 : (T ⊗B T )B −→ ((T ⊗B T )B)op , x⊗ y 7→ S−2(x(1))
[1]x(0)y ⊗ S−2(x(1))

[2]

satisfies the equation

t(1) ⊗ t(2) ⊗ t(3)(1) ⊗ t(3)(2) ⊗ t(3)(3) = t(1) ⊗Θ−1(t(2)(2) ⊗ t(2)(3))⊗ t(2)(1) ⊗ t(3)

in T ⊗ (T ⊗B T )B ⊗ (T ⊗B T )B for all t ∈ T .

Proof. We have to show that the expression on the right hand side of the
equation is well-defined. Consider the map

α : T ⊗ T −→ (T ⊗B T )B ⊗ T ⊗B T , x⊗ y 7→ x(2) ⊗ x(3) ⊗ x(1) ⊗ y .

Since α(xb⊗y) = x(2)⊗x(3)⊗x(1)b⊗y = x(2)⊗x(3)⊗x(1)⊗by = α(x⊗by) for
all b ∈ B, it factors over the quotient T⊗BT as ᾱ. Now let x⊗y ∈ (T⊗BT )B.
Then ᾱ(bx⊗ y) = ᾱ(x⊗ yb), and hence x(2) ⊗ x(3) ⊗ bx(1) ⊗ y = x(2) ⊗ x(3) ⊗
x(1) ⊗ yb which implies that the image of ᾱ lies in (T ⊗B T )B ⊗ (T ⊗B T )B

by faithful flatness of (T ⊗B T )B over k. Applying Θ−1 ⊗ id yields

(Θ−1 ⊗ id(T⊗BT )B)ᾱ(x⊗ y) = (Θ−1 ⊗ id)(x(2) ⊗ x(3) ⊗ x(1) ⊗ y)

= Θ−1(x(2) ⊗ x(3))⊗ x(1) ⊗ y .

So the right hand side of the equation can be expressed as the composition
of well-defined maps

(id⊗Θ−1 ⊗ id(T⊗BT )B)(id⊗ᾱ)µ(t) =

= (id⊗Θ−1 ⊗ id)(id⊗ᾱ)(t(1) ⊗ t(2) ⊗ t(3))

= t(1) ⊗Θ−1(t(2)(2) ⊗ t(2)(3))⊗ t(2)(1) ⊗ t(3) ,

for all ∈ T , and is therefore well-defined. Using that the torsor structure
map is given by µ(t) = t(1) ⊗ t(2) ⊗ t(3) = t(0) ⊗ t(1)

[1] ⊗ t(1)
[2] with respect to

the induced H-comodule structure on T , we obtain for t ∈ T

Θ−1(t(2) ⊗ t(3))⊗ t(1) = Θ−1(t(1)
[1] ⊗ t(1)

[2])⊗ t(0)

= S−1(t(1))
[1] ⊗ S−1(t(1))

[2] ⊗ t(0)
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by the formula in Remark 4.3.3. Hence we have by (1.5) and (1.4)

t(1) ⊗Θ−1(t(2)(2) ⊗ t(2)(3))⊗ t(2)(1) ⊗ t(3) =

= t(0) ⊗Θ−1(t(1)
[1]

(1)

[1] ⊗ t(1)
[1]

(1)

[2]
)⊗ t(1)

[1]
(0)
⊗ t(1)

[2]

= t(0) ⊗ S−1(t(1)
[1]

(1)
)[1] ⊗ S−1(t(1)

[1]
(1)

)[2] ⊗ t(1)
[1]

(0)
⊗ t(1)

[2]

= t(0) ⊗ S−1(S(t(1)))
[1] ⊗ S−1(S(t(1)))

[2] ⊗ t(2)
[1] ⊗ t(2)

[2]

= t(0) ⊗ t(1)
[1] ⊗ t(1)

[2] ⊗ t(2)
[1] ⊗ t(2)

[2]

= t(0) ⊗ t(1)
[1] ⊗ t(1)

[2]
(0)
⊗ t(1)

[2]
(1)

[1] ⊗ t(1)
[2]

(1)

[2]

= t(1) ⊗ t(2) ⊗ t(3)(1) ⊗ t(3)(2) ⊗ t(3)(3) ,

which is the claimed property. 2

Finally, we can also deduce the analogue to (4.7), which says that the Grun-
span map θ is a morphism of quantum torsors. Recall that we have shown in
Remark 4.2.15 that δ ◦ θ−1(r) = θ−1(r(0))⊗ S−2(r(1)) for all r ∈ TB. By the
result in Proposition 4.3.4, we can express the antipode S−1 of Hop in terms
of Θ−1 and obtain S−2(x⊗ y) = Θ−2(x⊗ y). This implies the following:

Corollary 4.3.6 The morphism θ−1 : TB −→ TB satisfies the equation

(θ−1 ⊗Θ−2) ◦ µ = µ ◦ θ−1 ,

that is

θ−1(r(1))⊗Θ−2(r(2) ⊗ r(3)) = θ−1(r)(1) ⊗ θ−1(r)(2) ⊗ θ−1(r)(3)

in TB ⊗ (T ⊗B T )B for all r ∈ TB.

Altogether we can interpret the two properties (4.6) and (4.7) of a Grunspan
map as follows:
The first property is due the particular way the Hopf algebra H coacts on
T . It is essentially determined by the inner structure of H, which is such
that Θ−1(x(2) ⊗ x(3)) ⊗ x(1) ⊗ y = x ⊗ y(1) ⊗ y(2) ⊗ y(3) for all x ⊗ y ∈
H ⊆ (T ⊗B T )B. The second property follows directly from the connection
between the antipode of the TB-Hopf algebroid (T⊗BT )B and its underlying
morphism.

Even though we are not able to recover a Grunspan map for B-torsors, we
still have an endomorphism θ : TB −→ TB of the centralizer and an implicit
formula for the antipode of the Hopf algebra H. They both give rise to
generalized Grunspan axioms as derived above.



Chapter 5

A-B-Torsors and Depth Two
Extensions

As we have seen so far, faithfully flat Hopf-Galois extensions can be com-
pletely described within the concept of quantum torsor and its more general
version of B-torsor. This is done such that the coaction of the Hopf algebra
is encoded in the respective torsor structure map. In this chapter, we show
that one can also go in the opposite direction: We uncover torsor structures
on extensions of depth two. Then our previous results imply that there are
actions of Hopf algebras that lead to Hopf-Galois extensions.
Inspired by this, we introduce the notion of A-B-torsor as the most general
concept of a noncommutative principal homogeneous space.

5.1 B-Torsors and Irreducible Depth Two

Extensions

The notion of depth two comes from the theory of invariants and subfactors.
Finite depth is a property of the standard invariant of the Jones tower for a
subfactor [19]. Jones towers can be used to investigate inclusions of semisim-
ple algebras and Frobenius extensions [21]. We use the following definition of
depth two for ring extensions as was introduced by Kadison and Szlachányi
in [22]:

Definition 5.1.1 A ring extension N ⊂ M is called left depth two or left
D2, if the canonical (N,M)-bimodule NM ⊗N MM is isomorphic to a direct
summand of the free module

⊕m
NMM for some positive integer m.
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A ring extension N ⊂M is called right depth two or right D2 if the canonical
(M,N)-bimodule MM ⊗N MN is isomorphic to a direct summand of the free
module

⊕n
MMN for some positive integer n.

An extension N ⊂ M is called depth two or D2 if it is both left depth two
and right depth two.

Depth two extensions are characterized by a quasibasis property. In the
sequel, we shall concentrate on right depth two extensions. The following
proof is outlined for left D2 in [22]:

Lemma 5.1.2 A ring extension N ⊂ M is right depth two if and only if
there exist ci = c1

i ⊗ c2
i ∈ (M ⊗N M)N and γi ∈ EndNMN , called a right D2

quasibasis, such that ∑
i

γi(m)c1
i ⊗ c2

i = 1⊗m (5.1)

in M ⊗N M for all m ∈M .

Proof. Let N ⊂ M be a right D2 extension. Then, by definition, there
exists a split epimorphism π :

⊕n
MMN −→ MM ⊗N MN with a section

σ : MM ⊗N MN −→
⊕n

MMN such that π ◦ σ = idM⊗NM . Let {ei}ni=1 be the
standard basis of the free module

⊕n
MM , and let pi :

⊕n
MMN −→ MMN

denote the standard projections.
We define ci := π(ei) for all i = 1, . . . n, and obtain ci ∈ (M ⊗N M)N since
π ∈ EndMMN . Now we consider the map ι : NMN −→ NM ⊗N MN ,m 7→
1 ⊗ m, and let γi := pi ◦ σ ◦ ι ∈ EndNMN . Then (ci, γi) is a right D2
quasibasis, since

1⊗m = ι(m) = π ◦ σ ◦ ι(m) = π(
n∑
i=1

pi ◦ σ ◦ ι(m)ei) = π(
n∑
i=1

γi(m)ei)

=
n∑
i=1

γi(m)π(ei) =
n∑
i=1

γi(m)c1
i ⊗ c2

i .

Assume now that there exists a right D2 quasibasis (ci, γi)
n
i=1 for the ring

extension N ⊂ M . As above, let {ei}ni=1 be the standard basis of the free
module

⊕n
MM , and define two (M,N)-bimodule maps π :

⊕n
MMN −→

MM ⊗N MN by π(ei) := ci for all i = 1, . . . n, and σ : MM ⊗N MN −→⊕n
MMN , x⊗ y 7→

∑
i xγi(y)ei.
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Then we have

π ◦ σ(x⊗ y) = π(
∑
i

xγi(y)ei) =
∑
i

xγi(y)π(ei)

=
∑
i

xγi(y)ci =
∑
i

xγi(y)c1
i ⊗ c2

i = x⊗ y ,

which shows that MM ⊗N MN is isomorphic to a direct summand of the free
module

⊕n
MMN . Hence, N ⊂M is right D2. 2

Various examples of depth two extensions, such as centrally projective ring
extensions and H-separable extensions, are discussed in [22]. It is shown
in [20] that each Hopf-Galois extension B ⊂ A with respect to a finite-
dimensional K-Hopf algebra H is depth two. The finiteness condition on H
allows to explicitly construct a quasibasis. However, this does not work for
arbitrary Hopf algebras.

We observe that the quasibasis property of Lemma 5.1.2 looks very much
like the first axiom for an N -torsor M in Definition 4.2.1. So we are going to
investigate whether there exists a connection between depth two extensions
and torsors.

For the rest of this section, we let A := EndNMN and B := (M⊗NM)N . As
in the previous chapter, the algebra structure on the centralizer B is given
by (x⊗ y)(x′ ⊗ y′) = x′x⊗ yy′ for x⊗ y, x′ ⊗ y′ ∈ (M ⊗N M)N .
We will sometimes abuse the notation, and treat elements in subsets of tensor
products as if they were decomposable tensors.

We state a main theorem for depth two extensions from [22], which shows
that a left D2 extension always comes along with a Morita context.

Theorem 5.1.3 ([22]) If N ⊂M is a left D2 extension, then R := MN and
C := EndN(M ⊗N M)M are Morita equivalent rings with invertible bimod-
ules CBR and RAC. In particular, BR and RA are finitely generated projective
generators with the following isomorphisms:

• B ⊗R A
∼=−→ C , b⊗ α 7→ (m⊗m′ 7→ bα(m)m′)

• BR

∼=−→ Hom(RA, RR)R , b = b1 ⊗ b2 7→ (α 7→ α(b1)b2)

• B ⊗RM
∼=−→M ⊗N M , b⊗m 7→ bm

• M ⊗N M
∼=−→ Hom(RA, RM) , m⊗m′ 7→ (α 7→ α(m)m′)

• C ∼= EndBR via c 7→ (b 7→ c(b))
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• C ∼= End RA via c 7→ (α 7→ ∇M(α ⊗ idM)cι1), where ι1 : M −→
M ⊗M , m 7→ m⊗ 1.

Of course, a corresponding version of the above theorem holds also for right
D2 extensions. This implies, in particular, the following statement:

Lemma 5.1.4 Let N ⊂ M be a right D2 extension with the quasibasis
(ci, γi). There is an isomorphism of (M,N)-bimodules

ρ : M ⊗R (M ⊗N M)N
∼=−→M ⊗N M

given by ρ(m ⊗
∑

j xj ⊗ yj) :=
∑

jmxj ⊗ yj with inverse ρ−1(x ⊗ y) :=∑
i xγi(y)⊗ c1

i ⊗ c2
i .

Proof. Obviously, both ρ and ρ−1 are (M,N)-bimodule maps. Let x⊗ y ∈
(M ⊗N M)N . Then we have nx ⊗ y = x ⊗ yn for all n ∈ N , and therefore
nxγi(y) = xγi(yn) = xγi(y)n for all i, showing that xγi(y) ∈MN = R. Now
we get

ρ−1 ◦ ρ(m⊗ x⊗ y) =
∑
i

mxγi(y)⊗ c1
i ⊗ c2

i

=
∑
i

m⊗ xγi(y)c1
i ⊗ c2

i

= m⊗ x⊗ y

and
ρ ◦ ρ−1(x⊗ y) =

∑
i

xγi(y)c1
i ⊗ c2

i = x⊗ y ,

which proves the claim. 2

Since the B-torsor axioms in Definition 4.2.1 are somewhat symmetrical, we
will have to work with right depth two extensions that have an additional
property. It turns out that the following restriction is sufficient:

Definition 5.1.5 A k-algebra extension N ⊂ M is called irreducible if the
centralizer R := MN of N in M is trivial, i.e. R ∼= k.

Lemma 5.1.4 now allows us to establish a connection between depth two
extensions and torsors:

Proposition 5.1.6 Let N ⊂M be an irreducible right D2 algebra extension
with M faithfully flat over k. Then M is a right N-torsor.
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Proof. Let (ci, γi) be a right D2 quasibasis for the extension N ⊂ M . We
claim that the map

µ : M −→M ⊗ (M ⊗N M)N , m 7→
∑

γi(m)⊗ c1
i ⊗ c2

i

defines an N -torsor structure on M . Since R ∼= k, we have the isomorphism

ρ : M ⊗ (M ⊗N M)N
∼=−→M ⊗N M , m⊗

∑
xj ⊗ yj 7→

∑
j

mxj ⊗ yj

from Lemma 5.1.4. Let m,m′ ∈M . Then we have

µ(mm′) =
∑
i

γi(mm
′)⊗ c1

i ⊗ c2
i ,

µ(m)µ(m′) = (
∑
i

γi(m)⊗ c1
i ⊗ c2

i )(
∑
j

γj(m
′)⊗ c1

j ⊗ c2
j)

=
∑
i,j

γi(m)γj(m
′)⊗ c1

jc
1
i ⊗ c2

i c
2
j .

We apply the the isomorphism ρ to both expressions and obtain

ρ(
∑
i

γi(mm
′)⊗ c1

i ⊗ c2
i ) =

∑
i

γi(mm
′)c1

i ⊗ c2
i = 1⊗mm′ ,

ρ(
∑
i,j

γi(m)γj(m
′)⊗ c1

jc
1
i ⊗ c2

i c
2
j) =

∑
i

γi(m)c1
i ⊗ c2

im
′ = 1⊗mm′ .

Hence, we can conclude that µ(mm′) = µ(m)µ(m′). Applying the quasibasis
property to the unit 1 ∈ M yields 1 ⊗ 1 =

∑
i c

1
i ⊗ c2

i and therefore µ(1) =
1 ⊗

∑
i c

1
i ⊗ c2

i = 1 ⊗ 1 ⊗ 1. So µ is an algebra morphism. We prove that µ
satisfies the properties of an N -torsor map in Definition 4.2.1:

1) The first N -torsor axiom m(1)m(2) ⊗m(3) = 1⊗m is exactly the right
D2 quasibasis property.

2) The quasibasis property implies
∑

i γi(m)c1
i c

2
i = m for all m ∈ M .

Since c1
i c

2
i ∈ R ∼= k for all i, it follows that

m(1) ⊗m(2)m(3) =
∑
i

γi(m)⊗ c1
i c

2
i =

∑
i

γi(m)c1
i c

2
i ⊗ 1 = m⊗ 1

for all m ∈M .
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3) Let n ∈ N . Then µ(n) =
∑

i γi(n) ⊗ c1
i ⊗ c2

i =
∑

i nγi(1) ⊗ c1
i ⊗ c2

i =
n⊗ 1⊗ 1.

4) Let f ∈ EndNMN . Then we have 1 ⊗ f(m) =
∑

i γi ◦ f(m)c1
i ⊗ c2

i

for all m ∈ M by the right quasibasis property. On the other hand,
by applying id⊗f to the quasibasis equation, we get 1 ⊗ f(m) =∑

i γi(m)c1
i ⊗ f(c2

i ). Under the isomorphism ρ this equality implies∑
i

γi ◦ f(m)⊗ c1
i ⊗ c2

i =
∑
i

γi(m)⊗ c1
i ⊗ f(c2

i ) ,

and hence

µ(m(1))⊗m(2) ⊗m(3) =
∑
i,j

γj ◦ γi(m)⊗ c1
j ⊗ c2

j ⊗ c1
i ⊗ c2

i

=
∑
i,j

γj(m)⊗ c1
j ⊗ γi(c2

j)⊗ c1
i ⊗ c2

i

= m(1) ⊗m(2) ⊗ µ(m(3)) .

2

The assumption that M be faithfully flat over k was not needed for the
proof, but really just included to meet the requirements of Definition 4.2.1.
It is clear that, as in the original definition of a quantum torsor, one could
formulate a definition of B-torsor without the assumption of faithful flatness.

But on the other hand, we rather keep this assumption to see that the rela-
tion between irreducible depth two extensions and torsors has the following
immediate consequence:

Corollary 5.1.7 Let N ⊂ M be an irreducible right depth two algebra ex-
tension and assume that M is both faithfully flat over k and right faithfully
flat over N .
Then M is a right Hopf-Galois extension of N , where the Hopf algebra that
coacts on M is H := (M ⊗N M)N = B.

Proof. Since M is an N -torsor by Proposition 5.1.6 and faithfully flat as a
right N -module, we can apply Theorem 4.2.2. It says that M is an H-Galois
extension of N with the Hopf algebra H given by

H = {x⊗ y ∈M ⊗N M | xy(1) ⊗ y(2) ⊗ y(3) = 1⊗ x⊗ y} .

With respect to the torsor structure defined in Proposition 5.1.6, we get

xy(1) ⊗ y(2) ⊗ y(3) =
∑
i

xγi(y)⊗ c1
i ⊗ c2

i
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and
1⊗ x⊗ y =

∑
i

γi(x)c1
i ⊗ c2

i ⊗ y

for all x⊗ y ∈M ⊗N M . The isomorphism ρ from Lemma 5.1.4 yields with
R ∼= k that

∑
i xγi(y)c1

i ⊗ c2
i = x⊗ y =

∑
i γi(x)c1

i c
2
i ⊗ y. Hence, the defining

condition for elements x⊗ y ∈ H holds for all elements of (M ⊗NM)N . This
implies that H = (M ⊗N M)N = B. 2

Remark 5.1.8 We note that in the above situation the Galois map is of

course given by the map ρ−1 : M ⊗N M
∼=−→ M ⊗ (M ⊗N M)N , x ⊗ y 7→∑

i xγi(y)⊗ c1
i ⊗ c2

i = x⊗ y(1) ⊗ y(2) ⊗ y(3) from Lemma 5.1.4.

We have just seen that irreducible depth two extensions N ⊂ M can be
considered as a special case of N -torsors. It turns out that also the converse
holds true if we impose a finiteness condition on M :

Proposition 5.1.9 Let N ⊂M be an irreducible algebra extension such that
M is finitely generated and projective as a left N-module. If there exists an
N-torsor structure µ : M −→ M ⊗ (M ⊗N M)N on M , then N ⊂ M is a
right depth two extension.

Proof. We know by the dual basis lemma that NM being finitely gen-
erated and projective is equivalent to the existence of a dual basis fi ∈
HomN(M,N), pi ∈M such that m =

∑
i fi(m)pi for all m ∈M .

Now the N -torsor axiom 1) yields 1 ⊗m = m(1)m(2) ⊗m(3) ∈ M ⊗N M for
all m ∈M , and we obtain on the other hand that 1⊗m = 1⊗

∑
i fi(m)pi =∑

i fi(m) ⊗ pi =
∑

i fi(m)pi
(1)pi

(2) ⊗ pi
(3). For all i there exist elements

xij, yij, zij ∈M such that µ(pi) =
∑

j xij ⊗ yij ⊗ zij ∈M ⊗ (M ⊗N M)N .

We claim that a right quasibasis for N ⊂ M is given by (cij, γij)i,j with
c1
ij ⊗ c2

ij := yij ⊗ zij ∈ (M ⊗N M)N and γij(m) := fi(m)xij for all m ∈ M .
We have ∑

i,j

γij(m)c1
ij ⊗ c2

ij =
∑
i

∑
j

fi(m)xijyij ⊗ zij

=
∑
i

fi(m)
∑
j

xijyij ⊗ zij

=
∑
i

fi(m)pi
(1)pi

(2) ⊗ pi(3)

=
∑
i

fi(m)⊗ pi = 1⊗
∑
i

fi(m)pi

= 1⊗m ∈M ⊗N M
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by what we have shown above.
It remains to be proved that γij ∈ EndNMN . It is clear that γij is left N -
linear, since fi is. For right N -linearity of γij, we show that for all m ∈ M ,
n ∈ N and i, j we have fi(mn)xij ⊗ yij ⊗ zij = fi(m)xijnyij ⊗ zij. This
follows via the isomorphism ρ : M ⊗ (M ⊗N M)N −→M ⊗N M from Lemma
5.1.4, since ρ(

∑
fi(mn)xij ⊗ yij ⊗ zij) =

∑
fi(mn)xijyij ⊗ zij = 1⊗mn and

ρ(
∑
fi(m)xijn ⊗ yij ⊗ zij) =

∑
fi(m)xijnyij ⊗ zij = fi(m)xijyij ⊗ zijn =

1⊗mn. 2

We are now going to show that the theory of N -torsors can be used to prove
and generalize results from [22] and [21] about Frobenius towers for depth
two extensions.

Let N ⊂M be an algebra extension. We recall the following definitions, see
for instance [22]:

Definition 5.1.10 A ring extension N ⊂M is called a Frobenius extension
if there exist (a so-called Frobenius homomorphism) E ∈ HomN,N(M,N) and
(so-called dual bases) xi, yi ∈M such that∑

i

λ(xi)Eλ(yi) = idM =
∑
i

ρ(yi)Eρ(xi) ,

where λ and ρ denote the left resp. right multiplication on M .

Definition 5.1.11 Let N ⊂ M be an algebra extension. Then M becomes
naturally a left EndMN -module by f ·m := f(m) for m ∈ M, f ∈ EndMN .
The right N -module MN is called balanced if the left endomorphism ring of

EndMN
M is naturally anti-isomorphic to N : EndEndMN

M ∼= N .

In [22] Kadison and Szlachányi prove that an irreducible Frobenius extension
N ⊂M of depth two is a B = (M⊗NM)N -Galois extension, provided MN is
balanced. This result is a corollary of a number of propositions that involve
quite a lot of work. Replacing Frobenius and balanced by a faithful flatness
assumption, we arrived at a similar statement in Corollary 5.1.7 above, using
just the theory of N -torsors.

Let N ⊂ M be a Frobenius extension with dual bases xi, yi ∈ M and a
Frobenius homomorphism E ∈ HomN,N(M,N). We recall the construction
of a generalized Jones tower for Frobenius extensions from [22]. It is based
on the fundamental construction described in [15].

Proposition 5.1.12 ([22]) Let N ⊂ M be a Frobenius extension. Then
there is an isomorphism EndMN

∼= M ⊗N M , f 7→
∑

i f(xi)⊗ yi with the



5.1. B-Torsors and Irreducible Depth Two Extensions 139

inverse given by m⊗m′ 7→ λ(m)Eλ(m′). Moreover, EndMN is a Frobenius
extension of M .

We denote by M1 := M ⊗N M the ring with the multiplication induced by
the isomorphism EndMN

∼= M ⊗N M . Then M1 is a Frobenius extension of
M .

The centralizer M1
N of N in M1 is isomorphic as an algebra to A = EndNMN

via α 7→
∑

i α(xi)⊗ yi. Note that the multiplication on M1
N = (M ⊗N M)N

differs from the algebra structure on B = (M ⊗N M)N in Proposition 5.1.7.

Now that M1 is a Frobenius extension of M , this construction can be iterated
to obtain a tower

N ⊂M ↪→M1 ↪→M2 ↪→ ... (5.2)

where also M2 = M1 ⊗M M1 is a Frobenius extension of M1, and so on.

We use the following results from [22] in the sequel:

Proposition 5.1.13 ([22]) If N ⊂M is a left D2 Frobenius extension, then
it is also right D2.

Proposition 5.1.14 ([22]) If N ⊂M is a left D2 Frobenius extension, then
M1 is a right D2 Frobenius extension of M .

We can now show that for the higher components M1,M2, . . . in the general-
ized Jones tower (5.2), the assumption on faithful flatness which we needed
in Proposition 5.1.7 can be dropped.

Proposition 5.1.15 Let N ⊂ M be an irreducible left depth two Frobenius
extension with M faithfully flat over k.
Then M1 is a right Hopf-Galois extension of M . The Hopf algebra that coacts
on M1 is H1 := (M1 ⊗M M1)M .

Proof. We first compute the centralizer of M in M1. Recall that we have an
isomorphism EndMN

∼= M1 by Proposition 5.1.12. The endomorphism ring
EndMN is a natural M -bimodule with (m · f)(x) = mf(x) and (f ·m)(x) =
f(mx). Hence, the centralizer of M in EndMN consists of the right M -linear
endomorphisms f ∈ EndMN , i.e. (EndMN)M = EndM MN . Since EndMM
becomes an N -bimodule by (n · f)(x) = f(xn) and (f · n)(x) = f(x)n, the
same reasoning shows that EndMMN = (EndMM)N , and we obtain

M1
M ∼= (EndMN)M = EndM MN = (EndM M)N ∼= MN = R .

Thus, M1
M ∼= R ∼= k, since we assumed N ⊂M to be irreducible.

Now N ⊂ M is a depth two extension and so, by definition, (M ⊗N M)M
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is isomorphic to a direct summand of the free M -module
⊕nMM for some

positive integer n. It is therefore flat over M .
In order to show that M ⊗N M is right faithfully flat over M , we let 0 6= X
be a left M -module. We have to show that M⊗NM⊗MX 6= 0. By Theorem
5.1.3 there is an isomorphism of (N,M)-bimodules B ⊗M ∼= M ⊗N M , and
B = (M ⊗N M)N is a finitely generated projective generator in the category
Mk of k-modules (since R ∼= k). So B is a faithfully flat k-module, and we
have

M ⊗N M ⊗M X ∼= B ⊗M ⊗M X ∼= B ⊗X 6= 0 ,

which proves that M1 = M⊗NM is right faithfully flat over M . We can also
deduce from the above isomorphism that M1 is a faithfully flat k-module,
since both B and M are faithfully flat over k. Altogether we arrive at the
situation that M ⊂ M1 is a k-faithfully flat irreducible right D2 Frobenius
extension with M1 faithfully flat as a right M -module. By Corollary 5.1.7
then H1 = (M1 ⊗M M1)M is a Hopf algebra, and M1 is a right H1-Galois
extension of M . 2

Remark 5.1.16 Above we have proved thatM1 is a faithfully flatM -module
using a property of B. In fact, M is isomorphic to a direct summand of M1,
since the maps ι : M −→M1 , m 7→ m⊗1 and p : M1 −→M , m⊗m′ 7→ mm′

satisfy p ◦ ι = idM .

We can now successively apply the Proposition 5.1.15 to each of the higher
components M2 = M1 ⊗M M1, M3 = M2 ⊗M1 M2, etc. in the Jones tower
(5.2). This leads to the following result:

Theorem 5.1.17 Let N ⊂ M be an irreducible right depth two Frobenius
extension with M a faithfully flat k-module.
Then in the generalized Jones tower for Frobenius extensions

N ⊂M := M0 ↪→M1 ↪→M2 ↪→ ... ,

each component Mi is an Hi-Galois extension of Mi−1, and the Hopf algebra
Hi that coacts on Mi is given by Hi := (Mi ⊗Mi−1

Mi)
Mi−1.

We remark again that the algebra structure on Hi in the above theorem
is not equal to the algebra structure on Mi+1

Mi−1 which is induced by the
isomorphism Mi+1

∼= EndMiMi−1
.

It was proved in [22] that M2
M ∼= B as algebras via the composition of

isomorphisms
M2

M ∼= EndM M1M
∼= (M ⊗N M)N ,
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using that N ⊂ M is a Frobenius extension. So we can apply the same
isomorphism to the Frobenius extension M ⊂M1 and get

M3
M1 ∼= (M1 ⊗M M1)M = H1 ,

as well as
Mi+1

Mi−1 ∼= (Mi−1 ⊗Mi−2
Mi−1)Mi−2 = Hi−1

for the higher components of the Jones tower (5.2)

We summarize a few more results from [22]: The authors show that for an
arbitrary depth two extension N ⊂ M , the algebra A = EndNMN has the
structure of a left R-bialgebroid and the algebra B = (M ⊗N M)N is a right
R-bialgebroid. This bialgebroid structure on B is actually the same as the
one we constructed in Proposition 4.2.3 on the centralizer (M ⊗M)N for an
N -torsor M .
One main result from [22] says that A and B possess dual left and right
R-bialgebroid structures. This refers to a definition of left and right duals
for bialgebroids, that generalizes the notion of left and right dual for finitely
generated projective k-bialgebras. So B is isomorphic as R-bialgebroids to
both the left and right bialgebroid dual of A. In case R ∼= k, that is for
an irreducible D2 Frobenius extension N ⊂ M , we can conclude that the
bialgebra A is the dual of B, i.e. A∗ ∼= B. Note that A and B both possess
duals since they are finitely generated projective k-modules by Theorem 5.1.3.

Using that A ∼= M1
N and B ∼= M2

M , we obtain by iteration

A ∼= M1
N ∼= (M2

M)∗ ∼= M3
M1 ∼= . . .

and
B ∼= M2

M ∼= (M3
M1)∗ ∼= M4

M2 ∼= . . .

as bialgebras. Hence, we conclude that the Hopf algebras Hi in Theorem
5.1.17 are given by

A ∼= H1
∼= H3

∼= . . . and B ∼= H2
∼= H4

∼= . . .

In the paper [21] of Kadison and Nikshych, which is a predecessor of [22],
only the first three components of the Jones tower are considered under more
restricted conditions than ours. One of them assumes k to be a field, and
another one requires MN to be balanced. The authors prove that M/N and
M2/M1 areB-Galois extensions and thatM1/M is an A-Galois extension. We
replace the condition that MN be balanced by a faithfully flatness assumption
on MN as before, and get a result as follows:
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Theorem 5.1.18 Let N ⊂ M be an irreducible depth two Frobenius exten-
sion with M faithfully flat over k. Then in the generalized Jones tower for
Frobenius extensions

N ⊂M := M0 ↪→M1 ↪→M2 ↪→ ...

the odd numbered components M2i+1 are A-Galois extensions of M2i and the
even numbered components M2i+2 are B-Galois extensions of M2i+1 for all
i ≥ 0.
Moreover, if M is a faithfully flat right N-module, then M is a B-Galois
extension of N .

This theorem is of course a direct consequence of what we have shown above.
Nevertheless, we can give another proof of the last statement, which indicates
where exactly the faithful flatness assumption is needed. We use the following
theorem that is stated in [28] (Theorem 8.3.3) in case k is a field, but holds
also for a commutative ring k, as in the original proofs of [25] and [53].

Theorem 5.1.19 Let H be a finitely generated projective Hopf algebra over
k and let M be a left H-module algebra.
Then M is a right H∗-Galois extension of MH = {m ∈ M | h · m =
ε(h)m ∀ h ∈ H} iff M is a finitely generated projective right MH-module
and the map

π : M#H −→ End(MMH ) , m⊗ h 7→ (m′ 7→ m(h ·m′))

is an algebra isomorphism.

Here is the alternative proof of Theorem 5.1.18:

Proof. It remains to be shown that M is a B-Galois extension of N . Now
B is finitely-generated by Theorem 5.1.3, and M becomes a left A-module
algebra via evaluation. The set of invariants MA = {x ∈ M | α(x) =
α(1)x ∀ α ∈ EndNMN = A} clearly contains N . We also observe that
α(1) ∈ MN ∼= k for all α ∈ A, and hence α(1)m = mα(1) for all m ∈ M .
This implies together with the quasibasis property (5.1) that we have for
x ∈MA

1⊗ x =
∑

γi(x)c1
i ⊗ c2

i =
∑

γi(1)xc1
i ⊗ c2

i =
∑

xγi(1)c1
i ⊗ c2

i = x⊗ 1

in M ⊗N M , and hence x ∈ N by faithful flatness of M over N . So we have
MA = N , and M is a finitely generated projective right N -module, since
N ⊂M is a Frobenius extension.
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By [22] Corollary 8.2., M1 is isomorphic to a smash product algebra M#A ∼=
M1 , m ⊗ α 7→

∑
imα(xi) ⊗ yi. Composing this map with the isomor-

phism M1
∼= EndMN , m ⊗ m′ 7→ λ(m)Eλ(m′) from Proposition 5.1.12,

we obtain m ⊗ α 7→
∑

i λ(mα(xi))Eλ(yi) and
∑

i λ(mα(xi))Eλ(yi)(m
′) =∑

imα(xi)E(yim
′) =

∑
imα(xiE(yim

′)) = mα(m′). This shows that there
is an isomorphism

M#A
∼=−→ EndMN , m⊗ α 7→ (m′ 7→ mα(m′)) .

Since B ∼= A∗, it follows by Theorem 5.1.19 that M is a B-Galois extension
of N . 2

Remark 5.1.20 The condition that MN be balanced in [22] was really just
needed to show that MA = N . We used faithful flatness for this part. So it
might be interesting at this point to compare these two conditions that do
not seem to be linked at first sight.
We let H be a finitely generated projective Hopf algebra over k and N ⊂M
an H∗-Galois extension with M finitely generated and projective as a right
N -module. Then we obtain by Theorem 5.1.19 an isomorphism M#H ∼=
EndMN . This means that the canonical left EndMN -module structure on
M is determined through the action of M#H on M . We have EndMM ∼= M ,
and so the endomorphisms of M that are simultaneously left M -linear and
left H-linear can be identified with the centralizer MH . So we see that for
this extension End EndMN

M ∼= EndM#HM ∼= MH = N , which means that
MN is balanced according to Definition 5.1.11. But of course, M does not
necessarily have to be right faithfully flat over N .
So our faithful flatness condition is really somewhat stronger than that of MN

being balanced. Nevertheless, faithful flatness allows us to use the theory of
N -torsors which provided the above results with significantly less effort than
the methods used in [22] and [21].

5.2 A-B-Torsors and ×A-Bialgebras

We have seen in the previous section that the notion of B-torsor is only
applicable to irreducible depth two extensions. In order to cover depth two
extensions without this restriction, we introduce the more general notion of
A-B-torsor. It generalizes the notion of quantum torsor and that of a B-
torsor. Moreover, it has the advantage of having a torsor structure map that
is symmetric with respect to the roles of A and B.
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Recall from Section 4.1 that given two k-algebras A and B, an A⊗B-ring T
is a k-algebra T together with an algebra map iT : A⊗B −→ T . This induces
an A ⊗ B-bimodule structure on T via multiplication with the image of iT .
We are going to denote the image iT (a ⊗ 1) ∈ T of a ∈ A simply as a ∈ T ,
and similarly, b = iT (1⊗ b) ∈ T for b ∈ B.

Definition 5.2.1 Let A and B be k-algebras, and let T be an A ⊗ B-ring.
An A-B-torsor structure on T is a map

µ : T −→ T ⊗A T ⊗B T , x 7→ x(1) ⊗ x(2) ⊗ x(3) ,

that satisfies the following properties:

1) ax(1) ⊗ x(2) ⊗ x(3) = x(1) ⊗ x(2)a⊗ x(3) for all a ∈ A

2) x(1) ⊗ bx(2) ⊗ x(3) = x(1) ⊗ x(2) ⊗ x(3)b for all b ∈ B

3) µ(xy) = x(1)y(1) ⊗ y(2)x(2) ⊗ x(3)y(3) for all x, y ∈ T

4) x(1)x(2) ⊗ x(3) = 1⊗ x ∈ T ⊗B T

5) x(1) ⊗ x(2)x(3) = x⊗ 1 ∈ T ⊗A T

6) µ(a) = 1⊗ 1⊗ a for all a ∈ A

7) µ(b) = b⊗ 1⊗ 1 for all b ∈ B

8) µ(x(1))⊗ x(2) ⊗ x(3) = x(1) ⊗ x(2) ⊗ µ(x(3)) ∈ T ⊗A T ⊗B T ⊗A T ⊗B T

We note that the composition of maps in axiom 8) is well-defined because µ
is a (B,A)-bimodule map by the axioms 6) and 7).

Remark 5.2.2 The fact that T is an A ⊗ B-ring in the definition implies
that the images of a ∈ A and b ∈ B in T have the property ab = ba.
If we consider A and B as subalgebras of T via iT : A ⊗ B −→ T , then the
centralizer (T ⊗A T )A, which becomes an algebra with the structure induced
from T⊗T op, possesses a natural B-bimodule structure. Similarly, (T⊗BT )B

with multiplication induced from T op ⊗ T becomes an A-bimodule.
So the conditions 1) and 2) in the above definition imply that we have simul-
taneously Im(µ) ⊂ (T ⊗A T )A ⊗B T and Im(µ) ⊂ T ⊗A (T ⊗B T )B. Hence,
axiom 3) could be also expressed in requiring that the map µ be an alge-
bra morphism with respect to the corresponding algebra structure on Im(µ),
which is then induced by T ⊗ T op ⊗ T .
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We have seen in Example 1.4.2 that each k-Hopf algebra carries the structure
of a quantum torsor. It turns out that this relation holds in an analogous
way for ×A-Hopf algebras and Ā-A-torsors. This provides an example for our
definition of A-B-torsor. We first recall some facts about ×A-Hopf algebras
from [43]:

Let L be a ×A-Hopf algebra. Then, by definition, the map

β̃ : L⊗Ā L −→ L � L , `⊗m 7→ `(1) ⊗ `(2)m

is bijective and we denote

`+ ⊗ `− := β̃−1(`⊗ 1) ∈ L⊗Ā L

for each ` ∈ L. This expression has the following properties that were de-
duced in [43].

Proposition 5.2.3 Let L be a ×a-Hopf algebra. Then we have

`+(1) ⊗ `+(2)`− = `⊗ 1 ∈ L � L (5.3)

`(1)+ ⊗ `(1)−`(2) = `⊗ 1 ∈ L⊗Ā L (5.4)

`+ ⊗ `− ∈
∫ b ∫

a
b̄Lā ⊗ āLb̄ (5.5)

(`m)+ ⊗ (`m)− = `+m+ ⊗m−`− ∈ L⊗Ā L (5.6)

1+ ⊗ 1− = 1⊗ 1 (5.7)

`+(1) ⊗ `+(2) ⊗ `− = `(1) ⊗ `(2)+ ⊗ `(2)− ∈
∫ cd ∫

ab
āLc̄ ⊗ ad̄Lcb̄ ⊗ b̄Ld̄ (5.8)

`+ ⊗ `−(1) ⊗ `−(2) = `++ ⊗ `− ⊗ `+− ∈
∫ cd ∫

ab
c̄Lā ⊗ b̄Ld̄ ⊗ bāLdc̄ (5.9)

`+ε(`−)(1) = ` (5.10)

`+`− = ε(`)(1) (5.11)

With some of these properties we can now show:

Proposition 5.2.4 Let L be a ×A-Hopf algebra. Then L is an Ā-A-torsor
with the torsor structure map

µ : L −→ L⊗Ā L⊗A L , ` 7→ `(1)+ ⊗ `(1)− ⊗ `(2) .

Proof. L is an Ae = A⊗ Ā-ring by definition, and it can obviously also be
considered as an Ā⊗ A-ring.
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In order to show that the map µ is well-defined, we have to verify that the
composition of the comultiplication ∆ : L −→ L ×A L , ` 7→ `(1) ⊗ `(2)

with β̃−1(− ⊗ 1) ⊗ id : L ⊗ L −→ L ⊗Ā L ⊗ L followed by the canonical
projection onto L⊗Ā L⊗A L is well-defined. The latter maps `⊗m ∈ L⊗L
to `+ ⊗ `− ⊗ m ∈ L ⊗Ā L ⊗A L, and factors over L � L. This is because
ā+ ⊗ ā− = β̃−1(ā⊗ 1) = β̃−1(1⊗ a) = 1⊗ a for a ∈ A, and so we have

(ā`)+ ⊗ (ā`)− ⊗m = ā+`+ ⊗ `−ā− ⊗m = `+ ⊗ `−a⊗m = `+ ⊗ `− ⊗ am

for `⊗m ∈ L � L by the property (5.6) above. Hence, µ is well-defined. We
check that µ satisfies the axioms of Definition 5.2.1:

1) We have ā`(1)+ ⊗ `(1)− ⊗ `(2) = `(1)+ ⊗ `(1)−ā⊗ `(2) for all ā ∈ Ā by the
property (5.5).

2) Since ∆(L) ⊂ L×A L implies `(1) ⊗ `(2)a = `(1)ā⊗ `(2), we get

`(1)+ ⊗ `(1)− ⊗ `(2)a = (`(1)ā)+ ⊗ (`(1)ā)− ⊗ `(2)

= `(1)+ā+ ⊗ ā−`(1)− ⊗ `(2)

= `(1)+ ⊗ a`(1)− ⊗ `(2) ,

using again that ā+ ⊗ ā− = 1⊗ a for all a ∈ A.

3) For the multiplicativity property we obtain

µ(`m) = (`m)(1)+ ⊗ (`m)(1)− ⊗ (`m)(2)

= (`(1)m(1))+ ⊗ (`(1)m(1))− ⊗ `(2)m(2)

= `(1)+m(1)+ ⊗m(1)−`(1)− ⊗ `(2)m(2)

for all `,m ∈ L by (5.6).

4) By the ×A-coalgebra axioms, we have ϑ′(ε×AL)∆(`) = ε(`(1))(1)`(2) =
`, and hence

`(1)+`(1)− ⊗ `(2) = ε(`(1))(1)⊗ `(2)

= 1⊗ ε(`(1))(1)`(2)

= 1⊗ ` ∈ L⊗A L

using property (5.11).

5) The equation `(1)+ ⊗ `(1)−`(2) = `⊗ 1 ∈ L⊗Ā L is exactly (5.4).

6) We have µ(ā) = µ(ā1) = 1+ ⊗ 1− ⊗ ā = 1⊗ 1⊗ ā by (5.7) and the fact
that ∆ is an Ae-ring map.
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7) Because of β̃(a ⊗ 1) = a ⊗ 1, we have µ(a) = (a1)+ ⊗ (a1)− ⊗ 1 =
a+ ⊗ a− ⊗ 1 = a⊗ 1⊗ 1 for all a ∈ A.

8) By (5.8) we get

µ(`(1)+)⊗ `(1)− ⊗ `(2) = `(1)+(1)+ ⊗ `(1)+(1)− ⊗ `(1)+(2) ⊗ `(1)− ⊗ `(2)

= `(1)(1)+ ⊗ `(1)(1)− ⊗ `(1)(2)+ ⊗ `(1)(2)− ⊗ `(2)

= `(1)+ ⊗ `(1)− ⊗ `(2)+ ⊗ `(2)− ⊗ `(3)

= `(1)+ ⊗ `(1)− ⊗ `(2)(1)+ ⊗ `(2)(1)− ⊗ `(2)(2)

= `(1)+ ⊗ `(1)− ⊗ µ(`(2)) .

Here, we applied coassociativity of ∆. It reads `(1)(1) ⊗ `(1)(2) ⊗ `(2) =
`(1) ⊗ `(2)(1) ⊗ `(2)(2) as elements of L � L � L.

2

The definition of A-B-torsor is symmetric with respect to the roles of A
and B. We compare this situation to that of a B-torsor T in Section 4.2.
In Proposition 4.2.3 we recovered a bialgebroid structure on the centralizer
(T ⊗B T )B. So now we can expect to obtain bialgebroid structures on both
(T ⊗A T )A and (T ⊗B T )B for an A-B-torsor T .

Proposition 5.2.5 Let T be an A-B-torsor and assume that (T ⊗A T )A is
right faithfully flat over B with respect to the natural B-bimodule structure.
Then there is a left TA-bialgebroid structure on (T ⊗A T )A with the structure
maps

• source map s : TA −→ (T ⊗A T )A , r 7→ r ⊗ 1

• target map t : TA −→ (T ⊗A T )A , r 7→ 1⊗ r

• comultiplication

∆ : (T ⊗A T )A −→ (T ⊗A T )A ⊗TA (T ⊗A T )A

x⊗ y 7→ x(1) ⊗ x(2) ⊗ x(3) ⊗ y

• counit ε : (T ⊗A T )A −→ TA , x⊗ y 7→ xy

Proof. We note that, since T is an A ⊗ B-ring, we have ab = ba in T for
the images of a ∈ A and b ∈ B. This implies B ⊂ TA and A ⊂ TB. We show
that the bialgebroid axioms in Definition 4.1.5 are satisfied.



148 Chapter 5. A-B-Torsors and Depth Two Extensions

We define a multiplication on (T ⊗A T )A by (a ⊗ b)(x ⊗ y) := ax ⊗ yb for
a⊗ b, x⊗ y ∈ (T ⊗A T )A. With this algebra structure on (T ⊗A T )A, we see
that s is an algebra morphism and t is an algebra anti-morphism satisfying
s(r)t(r′)t(r′)s(r) for all r, r′ ∈ TA. The resulting TA-bimodule structure on
(T ⊗A T )A is given by

r · (x⊗ y) · r′ = s(r)t(r′)(x⊗ y) = (r ⊗ 1)(1⊗ r′)(x⊗ y) = rx⊗ yr′ .

It corresponds to the natural TA-bimodule structure on (T ⊗A T )A.

In order to show that ∆ is well-defined, we first consider the map ∆0 :
T ⊗A T −→ T ⊗A T ⊗B T ⊗A T , u⊗ v 7→ u(1) ⊗ u(2) ⊗ u(3) ⊗ v, that is well-
defined by the torsor axiom 6). Now we can show that ∆0((T ⊗A T )A) ⊆
(T ⊗A T )A ⊗B (T ⊗A T )A. This expression makes sense, since (T ⊗A T )A

possesses a natural B-bimodule structure induced by B ⊂ TA. Let x ⊗ y ∈
(T ⊗A T )A and let a ∈ A. Then ∆0(ax ⊗ y) = ∆0(x ⊗ ya) and hence using
the axiom 6)

x(1) ⊗ x(2) ⊗ ax(3) ⊗ y = (ax)(1) ⊗ (ax)(2) ⊗ (ax)(3) ⊗ y
= x(1) ⊗ x(2) ⊗ x(3) ⊗ ya .

This proves the claim via faithful flatness of (T ⊗A T )A as a right B-module
and axiom 1). The map ∆ is then obtained by applying ∆0 followed by the
canonical residue class morphism (T ⊗AT )A⊗B (T ⊗AT )A −→ (T ⊗AT )A⊗TA
(T ⊗A T )A.
The counit ε is well-defined, since for x⊗ y ∈ (T ⊗A T )A and a ∈ A we have
axy = xya and thus ε((T ⊗A T )A) ⊆ TA.

We check that ∆ and ε are TA-bimodule morphisms. Let x⊗ y ∈ (T ⊗A T )A

and r ∈ TA. Since ra = ar for all a ∈ A, and thus r(1) ⊗ r(2) ⊗ ar(3) =
r(1) ⊗ r(2) ⊗ r(3)a, it follows by right faithful flatness of (T ⊗A T )A over B
that µ(r) ∈ T ⊗A T ⊗B TA. This leads to

∆(r · (x⊗ y)) = ∆(rx⊗ y)

= (rx)(1) ⊗ (rx)(2) ⊗ (rx)(3) ⊗ y
= r(1)x(1) ⊗ x(2)r(2) ⊗ r(3)x(3) ⊗ y
= r(1)x(1) ⊗ x(2)r(2)r(3) ⊗ x(3) ⊗ y
= rx(1) ⊗ x(2) ⊗ x(3) ⊗ y
= r ·∆(x⊗ y) .

Multiplying on the other side gives ∆((x⊗ y) · r) = ∆(x⊗ yr) = x(1)⊗x(2)⊗
x(3)⊗ yr = ∆(x⊗ y) · r. For the counit we get ε(rx⊗ y) = rxy = r · ε(x⊗ y)
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and ε(x⊗ yr) = xyr = ε(x⊗ y) · r.
Coassociativity of ∆ follows from coassociativity of µ. The counit axioms are
(ε⊗id)∆(x⊗y) = x(1)x(2)⊗x(3)⊗y = 1⊗x⊗y ∼= x⊗y and (id⊗ε)∆(x⊗y) =
x(1) ⊗ x(2) ⊗ x(3)y = x(1) ⊗ x(2)x(3)y ⊗ 1 ∼= x ⊗ y since x(1) ⊗ x(2) ⊗ x(3)y ∈
(T ⊗A T )A ⊗TA TA.

The proof of the first identity 1) in Definition 4.1.5 requires the following
lemma:

Lemma 5.2.6 The map

ψ : (T ⊗A T )A ⊗TA (T ⊗A T )A −→ (T ⊗A T ⊗A T )A

x⊗ y ⊗ v ⊗ w 7→ x⊗ yv ⊗ w

is bijective.

Proof. We claim that the inverse of ψ is given by

φ : (T ⊗A T ⊗A T )A −→ (T ⊗A T )A ⊗TA (T ⊗A T )A

x⊗ y ⊗ z 7→ x(1) ⊗ x(2) ⊗ x(3)y ⊗ z .

It is easy to see that both ψ and φ are well-defined. They are inverse to each
other since φ ◦ψ(x⊗ y⊗ v⊗w) = φ(x⊗ yv⊗w) = x(1)⊗x(2)⊗x(3)yv⊗w =
x(1)⊗x(2)x(3)y⊗v⊗w = x⊗y⊗v⊗w, where we used that x(1)⊗x(2)⊗x(3)y ∈
(T ⊗A T )A ⊗B TA, and ψ ◦ φ(x ⊗ y ⊗ z) = ψ(x(1) ⊗ x(2) ⊗ x(3)y ⊗ z) =
x(1) ⊗ x(2)x(3) ⊗ z = x⊗ y ⊗ z. 2

We have ∆(x ⊗ y)(1 ⊗ s(r)) = (x(1) ⊗ x(2) ⊗ x(3) ⊗ y)(1 ⊗ 1 ⊗ r ⊗ 1) =
x(1)⊗x(2)⊗x(3)r⊗y and ∆(x⊗y)(t(r)⊗1) = (x(1)⊗x(2)⊗x(3)⊗y)(1⊗r⊗1⊗1) =
x(1) ⊗ rx(2) ⊗ x(3) ⊗ y for x⊗ y ∈ (T ⊗A T )A.
Applying the isomorphism ψ to both expressions yields ψ(x(1)⊗x(2)⊗x(3)r⊗
y) = x(1) ⊗ x(2)x(3)r ⊗ y = x ⊗ r ⊗ y and ψ(x(1) ⊗ rx(2) ⊗ x(3) ⊗ y) = x(1) ⊗
rx(2)x(3)⊗y = x⊗r⊗y. This proves that the identity 1) holds. For identity 2)
we compute ∆((x⊗y)(v⊗w)) = ∆(xv⊗wy) = (xv)(1)⊗(xv)(2)⊗(xv)(3)⊗wy =
x(1)v(1)⊗v(2)x(2)⊗x(3)v(3)⊗wy = (x(1)⊗x(2)⊗x(3)⊗y)(v(1)⊗v(2)⊗v(3)⊗w) =
∆(x⊗y)∆(v⊗w). We clearly have ∆(1⊗1) = 1⊗1⊗1⊗1, since µ is an algebra
morphism. Finally, we obtain 4) and 5) since ε((x ⊗ y)sε(v ⊗ w)) = ε((x ⊗
y)(vw ⊗ 1)) = ε(xvw ⊗ y) = xvwy, ε((x⊗ y)(v ⊗ w)) = ε(xv ⊗ wy) = xvwy
and ε((x ⊗ y)tε(v ⊗ w)) = ε((x ⊗ y)(1 ⊗ vw)) = ε(x ⊗ vwy) = xvwy, and
clearly ε(1⊗ 1) = 1. 2

It is obvious that we also have a symmetric version of the above proposition.
So we obtain a right TB-bialgebroid structure on (T ⊗B T )B, provided it is
faithfully flat as a left A-module. Altogether we have:
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Corollary 5.2.7 Let T be an A-B-torsor and assume that (T⊗AT )A is right
faithfully flat over B and that (T ⊗B T )B is left faithfully flat over A.
Then (T ⊗A T )A is a left TA bialgebroid and (T ⊗B T )B is a right TB-
bialgebroid.

Example 5.2.8 Let T be a B-torsor with (T ⊗B T )B faithfully flat over k.
Then (T ⊗B T )B is a right TB-bialgebroid, as we have seen in Proposition
4.2.3. Considering the left hand side, we recover a left T k = T -bialgebroid
structure on T ⊗ T , which is equal to Lu’s trivial bialgebroid T ⊗ T op that
we described in Example 4.1.10. 2

Using the theory of faithfully flat descent as in [42], we can recover two
more bialgebroids from the structure map of an A-B-torsor. They are in
fact ×B resp. ×A-bialgebras, and in general different from the bialgebroids
constructed above. Moreover, we obtain that they are ×B-resp. ×A-Hopf
algebras inducing left and right Hopf-Galois extensions.
We start by observing that each A-B-torsor gives rise to two descent data.
This generalizes a fact shown for B-torsors in [42]. A brief explanation of
faithfully flat descent can be found in the appendix.

Lemma 5.2.9 Let T be an A-B-torsor. Then a left descent data from T to
A on T ⊗B T is given by

Dl : T ⊗B T −→ T ⊗A T ⊗B T , x⊗ y 7→ xy(1) ⊗ y(2) ⊗ y(3) .

It satisfies (T ⊗A Dl)µ(x) = x(1) ⊗ 1⊗ x(2) ⊗ x(3).

Proof. The map Dl is well-defined by the A-B-torsor axiom 7) and obvi-
ously left T -linear. The composition (T⊗ADl)µ is well-defined and we obtain
for x ∈ T

(T ⊗Dl)µ(x) = x(1) ⊗Dl(x
(2) ⊗ x(3))

= x(1) ⊗ x(2)x(3)(1) ⊗ x(3)(2) ⊗ x(3)(3)

= x(1)(1) ⊗ x(1)(2)x(1)(3) ⊗ x(2) ⊗ x(3)

= x(1) ⊗ 1⊗ x(2) ⊗ x(3)

by the axioms 8) and 5). Now we have

(T ⊗A Dl)Dl(x⊗ y) = xy(1) ⊗Dl(y
(2) ⊗ y(3))

= xy(1) ⊗ 1⊗ y(2) ⊗ y(3)

= (T ⊗A η ⊗A T ⊗B T )Dl(x⊗ y)
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and

(∇⊗B T )Dl(x⊗ y) = xy(1)y(2) ⊗ y(3) = x⊗ y

by axiom 4), which proves the claim. 2

We note that Dl(T ⊗B T ) ⊂ T ⊗A (T ⊗B T )B by axiom 2). If we assume that
T is right faithfully flat over A, then this implies Dl(T ⊗B T ) ⊂ (T ⊗B T )B,
where Dl(T ⊗B T ) = {x ⊗ y | Dl(x ⊗ y) = 1 ⊗ x ⊗ y}, as defined in the
appendix.

It is obvious that the map

Dr : T ⊗A T −→ T ⊗A T ⊗B T , x⊗ y 7→ x(1) ⊗ x(2) ⊗ x(3)y

defines a right descent data from T to B on T⊗AT with properties analogous
to those described in the previous Lemma.

Now we can generalize Schauenburg’s proof of Theorem 4.2.2:

Theorem 5.2.10 Let T be an A-B-torsor. Assume that T is both left and
right faithfully flat over A and B. Then the following hold:

1) The B ⊗ B̄-bimodule

G := (T ⊗A T )Dr = {x⊗ y ∈ T ⊗A T | x(1) ⊗ x(2) ⊗ x(3)y = x⊗ y ⊗ 1}

is faithfully flat over B, and has the structure of a ×B-Hopf algebra.

The algebra T is a left G-Galois extension of A under the G-coaction
δG : T −→ G×B T given by δG(x) = µ(x).

2) The Ā⊗ A-bimodule

H := Dl(T ⊗B T ) = {x⊗ y ∈ T ⊗B T | xy(1) ⊗ y(2) ⊗ y(3) = 1⊗ x⊗ y}

is faithfully flat over A, and has the structure of ×A-Hopf algebra.

The algebra T is a right H-Galois extension of B under the H-coaction
δH : T −→ T ×A H given by δH(x) = µ(x).

Proof. We recall from Section 4.1 that we defined ×B-bialgebras to be right
versions of ×B-bialgebras. Thus it is clear that part 2) of the theorem can
be proved analogously to part 1).
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We first observe that G is indeed a subalgebra of (T ⊗A T )A. We have for
x⊗ y, v ⊗ w ∈ G

Dr((x⊗ y)(v ⊗ w)) = Dr(xv ⊗ wy)

= (xv)(1) ⊗ (xv)(2) ⊗ (xv)(3)wy

= x(1)v(1) ⊗ v(2)x(2) ⊗ x(3)v(3)wy

= x(1)v ⊗ wx(2) ⊗ x(3)y

= xv ⊗ wy ⊗ 1

= (x⊗ y)(v ⊗ w)⊗ 1 ,

and thus (x⊗ y)(v ⊗ w) ∈ G. The natural Be = B ⊗ B̄-ring structure on G
is given by i : Be 3 b⊗ c̄ 7→ b⊗ c ∈ G (note that this is well defined because
of axiom 7)). It induces the Be-bimodule structure

(b⊗ c̄) � (x⊗ y) := bx⊗ yc , (x⊗ y) � (b⊗ c̄) := xb⊗ cy

on G. With this structure we have

G �G =

∫
b
b̄G⊗ bG =

= (G⊗G)/ < b̄g ⊗ h− g ⊗ bh | g, h ∈ G, b ∈ B >

= (G⊗G)/ < g1 ⊗ g2b⊗ h1 ⊗ h2 − g1 ⊗ g2 ⊗ bh1 ⊗ h2 > ,

and so we can identify G � G with G ⊗B G, the “standard” tensor product
over B. Then we obtain

G×B G =

∫ c ∫
b
b̄Gc̄ ⊗ bGc

= {g ⊗ h ∈ G⊗B G | gb̄⊗ h = g ⊗ hb ∀ b ∈ B}
= {g ⊗ h ∈ G⊗B G | g1 ⊗ bg2 ⊗ h1 ⊗ h2 = g1 ⊗ g2 ⊗ h1b⊗ h2} .

The algebra T becomes naturally a B-bimodule via its A⊗B-ring structure.
This means that

G � T =

∫
b
b̄G⊗ bT

= (G⊗ T )/ < g1 ⊗ g2b⊗ t− g1 ⊗ g2 ⊗ bt | g ∈ G, b ∈ B >

= G⊗B T ,

and
G×B T = {g ⊗ t ∈ G⊗B T | g1 ⊗ bg2 ⊗ t = g1 ⊗ g2 ⊗ tb} .
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We check that the coaction of G on T is well-defined. By left faithful flatness
of T over B, G⊗B T is given as the equalizer

T ⊗A T ⊗B T T ⊗A T ⊗B T ⊗B T-
T⊗AT⊗Bη⊗BT

-Dr⊗BT
.

Note that we have (Dr ⊗B T )µ(x) = (T ⊗A T ⊗B η ⊗B T )µ(x) by the right
symmetric version of Lemma 5.2.9. Moreover, we have x(1) ⊗ bx(2) ⊗ x(3) =
x(1) ⊗ x(2) ⊗ x(3)b for all b ∈ B and x ∈ T by axiom 2). Hence, we see that
µ(T ) ⊂ G×B T . Then δG is an algebra map since µ is, and it is right A-linear
by axiom 6).

It follows by faithfully flat descent that the map

Dr : T ⊗A T −→ G⊗B T , x⊗ y 7→ x(1) ⊗ x(2) ⊗ x(3)y

is an isomorphism. Of course, Dr is also the potential Galois map. Faithful
flatness of T over both A and B implies that G is faithfully flat over B.

We claim that G becomes a ×B-coalgebra with the comultiplication

∆ : G −→ G×B G , x⊗ y 7→ x(1) ⊗ x(2) ⊗ x(3) ⊗ y

and the counit

ε : G −→ End(B) , x⊗ y 7→ (b 7→ xby) .

The map ∆0 : T ⊗A T −→ G ⊗B T ⊗A T , x ⊗ y 7→ x(1) ⊗ x(2) ⊗ x(3) ⊗ y
is well-defined since µ is right A-linear. To prove that ∆ is well-defined, we
first show that ∆0(G) is contained in G � G, which is by faithful flatness of
G over B the equalizer

G⊗B T ⊗A T G⊗B T ⊗A T ⊗B T-
G⊗BT⊗AT⊗Bη

-G⊗BDr
.

But this is true, since we have for x⊗ y ∈ G

(G⊗B Dr)∆0(x⊗ y) = (G⊗B Dr)(x
(1) ⊗ x(2) ⊗ x(3) ⊗ y)

= x(1) ⊗ x(2) ⊗ x(3)(1) ⊗ x(3)(2) ⊗ x(3)(3)y

= µ(x(1))⊗ x(2) ⊗ x(3)y

= (µ⊗A T ⊗B T )Dr(x⊗ y)

= (µ⊗A T ⊗B T )(x⊗ y ⊗ 1)

= (∆0 ⊗B η)(x⊗ y)

= (G⊗B T ⊗A T ⊗B η)∆0(x⊗ y) .
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By axiom 2) the image of ∆ has moreover the property

x(1) ⊗ bx(2) ⊗ x(3) ⊗ y = x(1) ⊗ x(2) ⊗ x(3)b⊗ y

for all b ∈ B, and so we obtain ∆(G) ⊂ G×BG. Coassociativity of ∆ follows
from axiom 7) for the A-B-torsor T . It is straightforward to see that ∆ is a
Be-bimodule map.

We observe that for x ⊗ y ∈ G and b ∈ B we have x ⊗ by ∈ G, since
x(1)⊗x(2)⊗x(3)by = x(1)⊗bx(2)⊗x(3)y = x⊗by⊗1 by axiom 2). This implies
that the counit map is well-defined, since 1⊗xby = x(1)x(2)⊗x(3)by = xby⊗1
in T ⊗B T , and hence xby ∈ B by faithful flatness of T over B. The map ε
is clearly a Be-bimodule map.

Compatibility of ∆ and ε, as required in the definition of a ×B-coalgebra,
follows from

ϑ(G×B ε)∆(x⊗ y) = (x(3)y)(x(1) ⊗ x(2))

= x(1) ⊗ x(2)x(3)y

= x⊗ y

and

ϑ′(ε×B G)∆(x⊗ y) = (x(1)x(2))(x(3) ⊗ y)

= x(1)x(2)x(3) ⊗ y
= x⊗ y .

Moreover, ∆ an algebra map since µ satisfies axiom 3), and it is a map of
Be-rings since it commutes with the respective maps from Be:

∆ ◦ iG(b⊗ c̄) = ∆(b⊗ c)
= b(1) ⊗ b(2) ⊗ b(3) ⊗ c
= b⊗ 1⊗ 1⊗ c
= iG×BG(b⊗ c̄) .

The same holds for the counit ε, since

ε((x⊗ y)(v ⊗ w))(b) = ε(xv ⊗ wy)(b) = xvbwy = ε(x⊗ y) ◦ ε(v ⊗ w)(b)

for b ∈ B, and

ε ◦ i(b⊗ c̄)(b′) = bb′c = iEnd(B)(b⊗ c̄)(b′) .
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Altogether we see that the given maps define a ×B-bialgebra structure on G.
It is obvious that T becomes a left G-comodule algebra.

The set of coinvariants coGT := {t ∈ T | δ(t) = 1⊗1⊗t} contains A by axiom
6). Each t ∈ coGT has the property 1 ⊗ t = t(1) ⊗ t(2)t(3) = t ⊗ 1 ∈ T ⊗A T .
This implies t ∈ A by faithful flatness of T over A. Hence, we have coGT = A.

So the Galois map for the left G-comodule algebra T is given by

β : T ⊗A T −→ G � T , x⊗ y 7→ x(1) ⊗ x(2) ⊗ x(3)y ,

and it is an isomorphism by faithfully flat descent.

We have T ⊗A TB = {
∑
xi⊗ yi ∈ T ⊗A T |

∑
xi⊗ byi =

∑
xi⊗ yib ∀ b ∈ B}

by faithful flatness of T over A. Applying the Galois map β yields

β(x⊗ by) = x(1) ⊗ x(2) ⊗ x(3)by = x(1) ⊗ bx(2) ⊗ x(3)y

and
β(x⊗ yb) = x(1) ⊗ x(2) ⊗ x(3)yb .

This means that β(T ⊗A TB) = G×B T .

Hence, T is a left G-Galois extension of A by Definition 4.1.20. Eventually,
Lemma 4.1.21 implies that G is a ×B-Hopf algebra.

Although it is clear that part 2) of the theorem follows in a similar way using
the left descent data Dl : T ⊗B T −→ T ⊗A T ⊗B T , we mention a few facts
from the proof:

The algebra structure on H is given by (x ⊗ y)(v ⊗ w) = (vx ⊗ yw) for
x⊗ y, v ⊗ w ∈ H and makes H into a subalgebra of (T ⊗B T )B.
An Ae-ring structure on H = Dl(T ⊗B T ) is then given by iH : Ā ⊗ A −→
H , ā⊗ b 7→ a⊗ b, and it induces the Ā⊗ A-bimodule structure

(ā⊗ b) � (x⊗ y) = xa⊗ by , (x⊗ y) � (ā⊗ b) = ax⊗ yb

for ā⊗ b ∈ Ā⊗A. This implies in particular that the map ε : H −→ End(A)
given by ε(x⊗y)(a) := xay, is an Ae-ring map H −→ End(A)op, which proves
one of the axioms for a ×A-bialgebra. The comultiplication on H is given by

∆ : H −→ H ×A H , x⊗ y 7→ x⊗ y(1) ⊗ y(2) ⊗ y(3) ,

and T is a right H-Galois extension of B with the Galois map

T ⊗B T −→ T M H , x⊗ y 7→ xy(1) ⊗ y(2) ⊗ y(3) .

By what we have shown above, it is clear that H is a ×A-Hopf algebra. 2
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This result generalizes both the results of Grunspan for quantum torsors
and Schauenburg’s theorem for B-torsors. If A = k or B = A = k, then
the corresponding ×A-Hopf algebra is a k-Hopf algebra and T is a regular
Hopf-Galois extension.

Our result above says, that we can associate to each A-B-torsor a ×B-Hopf
algebra and a ×A-Hopf algebra. We apply this construction method to the
canonical Ā-A-torsor structure on a ×A-Hopf algebra L that we constructed
in Proposition 5.2.4.

Proposition 5.2.11 Let L be a ×A-Hopf algebra and assume that it is faith-
fully flat over A. Then L is isomorphic to the ×A-Hopf algebra

G = {x⊗ y ∈ L⊗Ā L | x(1) ⊗ x(2) ⊗ x(3)y = x⊗ y ⊗ 1}

that arises by Theorem 5.2.10 from the Ā-A-torsor structure

µ : L −→ L⊗Ā L⊗A L , ` 7→ `(1)+ ⊗ `(1)− ⊗ `(2)

on L.

Proof. We consider the map κ : L −→ G , ` 7→ `+ ⊗ `−. It is well-defined
since

`+
(1) ⊗ `+

(2) ⊗ `+
(3)`− = `+(1)+ ⊗ `+(1)− ⊗ `+(2)`−

= `+ ⊗ `− ⊗ 1

for all ` ∈ L by property (5.3) in Proposition 5.2.3.
We use ā+ ⊗ ā− = 1 ⊗ a for all a ∈ A, to obtain κ(ā`) = ā+`+ ⊗ `−ā− =
`+ ⊗ `−a = ā · (`+ ⊗ `−) = āκ(`) by definition of the Ae-bimodule structure
on G. This shows that κ is left Ā-linear. Now G can be considered as a right
A-module via the left Ā-action, and L becomes an (A,A)-bimodule via the
given left A⊗ Ā-module structure. Then the map

κ⊗A L : L⊗A L −→ G⊗A L , `⊗m 7→ `+ ⊗ `− ⊗m

is well-defined, and has the inverse

G⊗A L −→ L⊗A L , x⊗ y ⊗m 7→ x(1) ⊗ x(2)ym .

This follows from `+(1) ⊗ `+(2)`−m = ` ⊗ m by (5.3), and x(1)+ ⊗ x(1)− ⊗
x(2)ym = x ⊗ y ⊗ m by definition of G. So we can conclude by faithful
flatness of L over A that the map κ is bijective.
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It remains to be shown that κ is a morphism of ×A-bialgebras. It is clearly
a map of A⊗ Ā-rings, and we get by (5.8) for all ` ∈ L

∆G ◦ κ(`) = ∆G(`+ ⊗ `−)

= `+(1)+ ⊗ `+(1)− ⊗ `+(2) ⊗ `−
= `(1)+ ⊗ `(1)− ⊗ `(2)+ ⊗ `(2)−

= (κ×A κ)∆L(`) .

Finally we have

(εG ◦ κ)(`)(1) = εG(`+ ⊗ `−)(1) = `+`− = εL(`)(1)

by (5.11), showing that εG ◦ κ = εL as Ae-ring maps L −→ End(A). 2

The previous proposition is consistent with what we already know for k-Hopf
algebras: Each ×A-Hopf algebra L that is faithfully flat over A is a left L-
Galois extension of A.
By what we have seen in Theorem 5.2.10, the Ā-A-torsor structure on a
×A-Hopf algebra L also induces a ×Ā-Hopf algebra H ⊆ (T ⊗Ā T )Ā. In the
sequel, we explain how it is linked to L.

Given a ×A-bialgebra L with the Ae-ring structure iL : Ae = A ⊗ Ā −→ L,
we know from Remark 4.1.7 that the opposite algebra Lop is a ×A-bialgebra
(this expresses exactly our construction of ×A-bialgebra in Section 4.1). Its
Ae-ring structure is given by iLop : Ā⊗A −→ Lop, iLop(ā⊗ b) := iL(a⊗ b̄), and
consequently the right action of A resp. Ā on Lop comes from the left action
of Ā resp. A on L. The left actions are induced analogously by the respective
right actions. This implies that, as k-modules, Lop M Lop =

∫
a
Lopa ⊗ Lopā

equals
∫
a ā
L⊗ aL = L � L, and Lop ⊗Ā Lop equals

∫
a a
L⊗ La.

We have seen in Remark 4.1.3 that endowing L with the coopposite comul-
tiplication

∆cop : L
∆−→ L×A L

σ−→
∫ b ∫

a
aLb ⊗ āLb̄ , ` 7→ `(2) ⊗ `(1)

leads to a ×Ā-bialgebra Lcop with the Āe-ring structure iLcop : Ā⊗A −→ Lcop,
iLcop(ā⊗ b) := iL(b⊗ ā). Here, the actions of A resp. Ā stay the same.

Applying both these constructions to L yields a ×Ā-bialgebra Lopcop with
iLopcop : Āe = A⊗ Ā −→ Lopcop, iLopcop(a⊗ b̄) = iLcop(ā⊗ b) = iL(b⊗ ā). The A
resp. Ā-bimodule structure on Lopcop is such that, as k-modules,

∫
a
Lopcopā ⊗

Lopcopa =
∫
a a
L⊗ āL, and Lopcop ⊗A Lopcop =

∫
a ā
L⊗ Lā.
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We assume now that L is a ×A-Hopf algebra, i.e.

β : L⊗Ā L −→ L � L =

∫
a
āL⊗ aL , `⊗m 7→ `(1) ⊗ `(2)m

is a bijective map. The symmetry in Mk induces the isomorphisms

ρ1 :

∫
a
āL⊗ Lā −→

∫
a

Lā ⊗ āL = L⊗Ā L , `⊗m 7→ m⊗ `

and

ρ2 :

∫
a
āL⊗ aL −→

∫
a
aL⊗ āL , `⊗m 7→ m⊗ ` .

The ×Ā-bialgebra Lopcop is a ×Ā-Hopf algebra by Definition 4.1.17, if the
map

βopcop : Lopcop ⊗A Lopcop −→
∫
a

Lopcopā ⊗ Lopcopa , `⊗m 7→ m(2)`⊗m(1)

is bijective. We obtain for `⊗m ∈
∫
a ā
L⊗ Lā

ρ2 ◦ β ◦ ρ1(`⊗m) = ρ2 ◦ β(m⊗ `) = ρ2(m(1) ⊗m(2)`)

= m(2)`⊗m(1) = βopcop(`⊗m) .

With the identifications we made above, it follows that bijectivity of β implies
that βopcop is bijective, and so Lopcop is a ×Ā-Hopf algebra.

We can now prove that this opposite coopposite ×Ā-Hopf algebra Lopcop arises
in Theorem 5.2.10, when we apply it to the Ā-A-torsor structure on the ×A-
Hopf algebra L.

Theorem 5.2.12 Let L be a ×A-Hopf algebra that is faithfully flat over both
A and Ā. Assume that Lcop is a ×Ā-Hopf algebra.
Then the ×Ā-Hopf algebra

H = {x⊗ y ∈ L⊗A L | xy(1)+ ⊗ y(1)− ⊗ y(2) = 1⊗ x⊗ y}

that arises from the Ā-A-torsor structure on L is isomorphic to Lopcop.

Proof. By definition, Lcop is a ×Ā-Hopf algebra iff the map

βcop : L⊗A L −→
∫
a
aL⊗ āL , `⊗m 7→ `(2) ⊗ `(1)m
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is bijective. We are going to denote `+ ⊗ `− := βcop
−1(` ⊗ 1) ∈ L ⊗A L for

` ∈ L. Then, as can be seen by modifying the results of Proposition 5.2.3,
the following hold:

`+
(2) ⊗ `+

(1)`
− = `⊗ 1 ∈

∫
a
aL⊗ āL (5.12)

`(2)
+ ⊗ `(2)

−`(1) = `⊗ 1 ∈ L⊗A L (5.13)

(`m)+ ⊗ (`m)− = `+m+ ⊗m−`− ∈ L⊗A L (5.14)

`+
(2) ⊗ `+

(1) ⊗ `− = `(2) ⊗ `(1)
+ ⊗ `(1)

− ∈
∫
ab
aL⊗ āLb ⊗ bL (5.15)

`+ ⊗ `−(2) ⊗ `−(1) = `++ ⊗ `− ⊗ `+− ∈
∫
ab

La ⊗ bL⊗ ab̄L (5.16)

`+`− = ε(`)(1) (5.17)

We also note that a+ ⊗ a− = 1⊗ ā and ā+ ⊗ ā− = ā⊗ 1 for all a ∈ A.

By Proposition 5.2.4, Lcop becomes an A-Ā-torsor with the torsor structure
map

µLcop : L −→ L⊗A L⊗Ā L , ` 7→ `(2)
+ ⊗ `(2)

− ⊗ `(1) .

Then Lcop is isomorphic as ×Ā-Hopf algebras to G̃ := {x ⊗ y ∈ L ⊗A L |
x(2)

+⊗ x(2)
−⊗ x(1)y = x⊗ y⊗ 1} by Theorem 5.2.11. The isomorphism Lcop

−→ G̃ is of course given by ` 7→ `+ ⊗ `−.

We show that the sets G̃ and H are equal. Let x ⊗ y ∈ H, that is xy(1)+ ⊗
y(1)− ⊗ y(2) = 1⊗ x⊗ y in L⊗Ā L⊗A L. We apply the map

λ : L⊗Ā L⊗A L −→ L⊗A L⊗Ā L , `⊗m⊗ n 7→ `m(2)
+ ⊗m(2)

− ⊗m(1)n

to both sides of the equation. Note that λ well-defined, since we have
`(ām(2))

+⊗ (ām(2))
−⊗m(1)n = `ām(2)

+⊗m(2)
−⊗m(1)n for ā ∈ Ā using that

∆ is an Āe-module map. We obtain for x⊗ y ∈ H

λ(1⊗ x⊗ y) = x(2)
+ ⊗ x(2)

− ⊗ x(1)y

and

λ(xy(1)+ ⊗ y(1)− ⊗ y(2)) = xy(1)+y(1)−(2)
+ ⊗ y(1)−(2)

− ⊗ y(1)−(1)y(2)

= xy(1)++y(1)+−
+ ⊗ y(1)+−

− ⊗ y(1)−y(2)

= xy+y−
+ ⊗ y−− ⊗ 1 .

Here, we use for the second equality that applying (5.9) to y(1)⊗ y(2) ∈ L �L
is well-defined, and derive the third equation from (5.4).
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We note that the expression y+y−
+ ⊗ y−

− ∈ L ⊗A L is well-defined, and
claim that y+y−

+ ⊗ y−− = 1⊗ y ∈ L⊗A L. This can be verified by applying
the isomorphism βcop : L ⊗A L −→

∫
a a
L ⊗ āL to both expressions. We have

βcop(1⊗ y) = 1⊗ y, and

βcop(y+y−
+ ⊗ y−−) = y+(2)y−

+
(2) ⊗ y+(1)y−

+
(1)y−

−

= y+(2)y− ⊗ y+(1)

= 1⊗ y ,

where the second equation follows from (5.12), and the third one from (5.3).
We have to verify that the second expression is indeed well-defined: We
have y+ ⊗ y− ∈ L ⊗Ā L and get for ` ⊗ m ∈ L ⊗ L and a ∈ A that
(`ā)(2)m

+
(2) ⊗ (`ā)(1)m

+
(1)m

− = `(2)ām
+

(2) ⊗ `(1)m
+

(1)m
− = `(2)(ām)+

(2) ⊗
`(1)(ām)+

(1)(ām)−.

Returning to our previous calculation, we now have

λ(xy(1)+ ⊗ y(1)− ⊗ y(2)) = xy+y−
+ ⊗ y−− ⊗ 1

= x⊗ y ⊗ 1 .

So it follows that x ⊗ y ∈ H satisfies the equation x(2)+ ⊗ x(2)− ⊗ x(1)y =

x⊗ y ⊗ 1 ∈ L⊗A L⊗Ā L, which means that x⊗ y ∈ G̃.

It is clear that we can show G̃ ⊂ H by similar reasoning, such that we have
altogether H = G̃. This implies by the result in Proposition 5.2.11 that there
is a bijection Lcop −→ H , ` 7→ `+ ⊗ `−, and it remains to be shown that it
induces an isomorphism of ×Ā-bialgebras κ̃ : Lopcop −→ H.

Now κ̃ is an algebra morphism, since κ̃(` ·m) = κ̃(m`) = (m`)+ ⊗ (m`)− =
m+`− ⊗ `−m− = (`+ ⊗ `−)(m+ ⊗m−) = κ̃(`)κ̃(m) for `,m ∈ Lopcop. Hence,
κ̃ is a Āe-ring map. We have

∆H ◦ κ̃(`) = ∆H(`+ ⊗ `−)

= `+ ⊗ `−(1)+ ⊗ `−(1)− ⊗ `−(2)

= `++ ⊗ `+−
+ ⊗ `+−

− ⊗ `−

and

(κ̃×Ā κ̃)∆Lopcop(`) = (κ̃×Ā κ̃)(`+ ⊗ `−)

= `(2)
+ ⊗ `(2)

− ⊗ `(1)
+ ⊗ `(1)

−

= `+
(2)

+ ⊗ `+
(2)
− ⊗ `+

(1) ⊗ `− .

In order to show that both expressions are equal in
∫
ā
Hā⊗Ha, which can be

identified with L⊗AL⊗ĀL⊗AL, we apply the isomorphism L⊗A β⊗AL to
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them. This is well-defined, since β : L⊗Ā L −→ L � L , `⊗m 7→ `(1) ⊗ `(2)m
is left and right A-linear. We obtain

(L⊗A β ⊗A L)(`+
(2)

+ ⊗ `+
(2)
− ⊗ `+

(1) ⊗ `−) =

= `+
(2)

+ ⊗ `+
(2)
−

(1)
⊗ `+

(2)
−

(2)
`+

(1) ⊗ `− =

= `+
(2)

++ ⊗ `+
(2)

+− ⊗ `+
(2)
−
`+

(1) ⊗ `− =

= `++ ⊗ `+− ⊗ 1⊗ `− ,

where the second equality follows from (5.16). This operation is well-defined,
since `+

(2)⊗`+
(1)⊗`− ∈

∫
ab a

L⊗āLb⊗bL and (a`)+⊗(a`)−(1)⊗(a`)−(2)m⊗n =

`+ ⊗ (`−ā)(1) ⊗ (`−ā)(2)m ⊗ n = `+ ⊗ `−(1) ⊗ `−(2)ām ⊗ n for all `,m, n ∈ L
and a ∈ A. The last equality is a consequence of (5.13) applied to `+ ⊗ `−.
The other expression is mapped to

(L⊗A β ⊗A L)(`++ ⊗ `+−
+ ⊗ `+−

− ⊗ `−) =

= `++ ⊗ `+−
+(1) ⊗ `+−

+(2)`
+−
− ⊗ `− =

= `++ ⊗ `+− ⊗ 1⊗ `−,

which can be deduced from (5.3), verifying that the expression in fact well-
defined: We have `++⊗`+−⊗`− ∈

∫
ab
La⊗ab̄L⊗bL, and obtain for `⊗m⊗n ∈

L⊗L⊗L that `⊗(am)+(1)⊗(am)+(2)(am)−⊗n = `⊗am+(1)⊗m+(2)m−⊗n =
`a⊗m+(1)⊗m+(2)m−⊗n in L⊗AL�L⊗AL, and `⊗(ām)+(1)⊗(ām)+(2)(ām)−
⊗n = `⊗m+(1)⊗m+(2)m−a⊗n = `⊗m+(1)⊗m+(2)m−⊗an in L⊗AL�L⊗AL.

So altogether we have proved that κ̃ : Lopcop −→ H is compatible with the
respective comultiplications. Finally, we have

(εH ◦ κ̃)(`)(1) = εH(`+ ⊗ `−)(1) = `+`− = εLopcop(`)(1) .

This shows that κ̃ : Lopcop −→ H is an isomorphism of ×Ā-bialgebras and
therefore an isomorphism of ×Ā-Hopf algebras. 2

5.3 A Jones Tower with Coactions of

×R-Hopf Algebras

We apply our results for A-B-torsors that we obtained in the previous section
to the theory of depth two extensions. The notion of A-B-torsor allows a
torsor structure map with tensor products over two nontrivial rings. There-
fore, we do no longer have to restrict our considerations to irreducible depth
two extensions, but have the following more general result:
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Proposition 5.3.1 Let N ⊂ M be a right depth two algebra extension and
set R := MN . Then M is an R-N-torsor.

Proof. Both R = MN and N subalgebras of M with the property rn = nr
for all r ∈ R and n ∈ N . So there exits an R⊗N -ring structure on M , given
by iM : R⊗N −→M , iM(r ⊗ n) := rn.
Let (ci, γi) be a right D2 quasibasis for the extension N ⊂ M according to
Lemma 5.1.2. We claim that the map

µ : M −→M ⊗RM ⊗N M , m 7→
∑

γi(m)⊗ c1
i ⊗ c2

i

makes M into an R-N -torsor. This map obviously satisfies axiom 2) in
Definition 5.2.1. Since (M ⊗N M)N is a natural R-bimodule, we can treat µ
as a map µ : M −→M ⊗R (M ⊗N M)N . Now, using the isomorphism

ρ : M ⊗R (M ⊗N M)N
∼=−→M ⊗N M , m⊗

∑
xj ⊗ yj 7→

∑
mxj ⊗ yj

from Lemma 5.1.4, the axioms of an R-N -torsor can be proved just as in
Proposition 5.1.6 for the special case R = k. 2

We have shown in Proposition 5.2.5 that each A-B-torsor T gives rise to a left
TA-bialgebroid structure on (T ⊗A T )A and a right TB-bialgebroid structure
on (T ⊗B T )B. For a right D2 extension N ⊂ M , this recovers the right
R = MN -bialgebroid (M ⊗N M)N from [22]:

Proposition 5.3.2 Let N ⊂ M be a right D2 extension and set R := MN .
Then there is a right R-bialgebroid structure on B = (M ⊗N M)N .
The structure maps are given by

• source s : R −→ B , r 7→ 1⊗ r

• target t : Rop −→ B , r 7→ r ⊗ 1

• ∆ : B −→ B ⊗R B ,
∑

j xj ⊗ yj 7→
∑

i,j xj ⊗ γi(yj)⊗ c1
i ⊗ c2

i

• ε : B −→ R ,
∑

j xj ⊗ yj 7→
∑

j xjyj

where (γi, ci) is a right quasibasis for N ⊂M .

Proof. The algebra M is an R-N -torsor by Proposition 5.3.1. By the right
symmetric version of Theorem 5.1.3, RB is a finitely generated projective
generator and therefore left faithfully flat over R. So the conditions of Propo-
sition 5.2.5 are satisfied and we obtain the above structure maps for the right
R-bialgebroid B = (M ⊗N M)N . 2
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Remark 5.3.3 Let N ⊂ M be a depth two extension. Then M is both an
N -R-torsor and an R-N -torsor. The resulting structure of left R-bialgebroid
on (M ⊗N M)N equals the left R-bialgebroid structure on Bop that arises
naturally from the right R-bialgebroid structure on B in the previous propo-
sition.

Let N ⊂M be a right depth two extension such that M is faithfully flat over
both R and N . Then we can apply Theorem 5.2.10 and obtain by faithfully
flat descent a ×N -Hopf algebra that coacts on M on the left and a ×R-Hopf
algebra that coacts on the right. As in the irreducible case, it turns out that
the latter is the same as the R-bialgebroid from Proposition 5.3.2:

Proposition 5.3.4 Let N ⊂M be a right depth two extension such that M
is faithfully flat over both R and N .
Then the right R-bialgebroid (M ⊗N M)N from Proposition 5.3.2 is isomor-
phic as R-bialgebroids (resp. ×R-bialgebras) to the ×R-Hopf algebra

H := Dl(M ⊗N M) = {x⊗ y ∈M ⊗N M |
∑

xγi(y)⊗ c1
i ⊗ c2

i = 1⊗ x⊗ y}

from Theorem 5.2.10.

Proof. It follows by right faithful flatness of M over R that H is a subset
of (M ⊗N M)N . Recall from Lemma 5.1.4 that we have the isomorphism
ρ : M ⊗R (M ⊗N M)N −→ M ⊗N M , m ⊗

∑
j xj ⊗ yj 7→

∑
mxj ⊗ yj. We

obtain for x⊗ y ∈ (M ⊗N M)N

ρ(
∑

xγi(y)⊗ c1
i ⊗ c2

i ) =
∑

xγi(y)c1
i ⊗ c2

i

= x⊗ y
= ρ(1⊗ x⊗ y)

by the quasibasis property. Thus, each element of (M ⊗N M)N is contained
in H, and hence we have H = (M ⊗N M)N . We have explicitly shown in
Proposition 4.1.14 that the right R-bialgebroid structure on (M ⊗N M)N

corresponds to a structure of ×R-bialgebra. It is obvious that this is the
same structure as the ×R-bialgebra structure on H from Theorem 5.2.10. 2

Combining Proposition 5.3.1 and Theorem 5.2.10 yields the following result:

Corollary 5.3.5 Let N ⊂ M be a right depth two extension with M faith-
fully flat over both R and N .
Then B = (M⊗NM)N is a ×R-Hopf algebra, and M is a B-Galois extension
of N .
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Finally, we apply our results to the generalized Jones tower for Frobenius
extensions that we considered in Section 5.1 for the irreducible case.
Let N ⊂M be a right depth two Frobenius extension. We consider the Jones
tower for Frobenius extensions (5.2)

N ⊂M ↪→M1 ↪→M2 ↪→ ...

where M1 = M ⊗N M , M2 = M1 ⊗M M1, and so on. We have shown in
Proposition 5.1.15 that M1

M ∼= R. If we assume in addition that M is
faithfully flat over both R and N , then it follows that M1 is faithfully flat
over both R and M . So M1 is an R-M -torsor and we obtain as above that
(M1 ⊗M M1)M is a ×R-Hopf algebra and that M is a (M1 ⊗M M1)M -Galois
extension of M .
This reasoning can be successively applied to each of the other components
of the Jones tower. We obtain Mi

Mi−1 ∼= R for all i ∈ N, and Mi is faithfully
flat over both R and Mi−1. Thus, Mi is an R-Mi−1-torsor with a coaction of
the ×R-Hopf algebra (Mi ⊗Mi−1

Mi)
Mi−1 . This leads to our final result:

Theorem 5.3.6 Let N ⊂ M be a depth two Frobenius extension. Assume
that M is faithfully flat over both R and N . Then the Jones tower

N := M−1 ⊂M := M0 ↪→M1 ↪→M2 ↪→ ...

consists of ×R-Hopf-Galois extensions.
More precisely, each Mi is an Hi-Galois extension of Mi−1. The ×R-Hopf
algebra that coacts on Mi is given by Hi := (Mi ⊗Mi−1

Mi)
Mi−1.

This Theorem extends the results of [22], where only bialgebroid coactions on
the components M , M1 and M2 were established. It turns out that Schauen-
burg’s concept of a ×R-Hopf algebra admits a natural generalization of the
results in Section 5.1. The Hopf algebra coactions in the irreducible case are
special cases of ×R-Hopf algebra coactions in the case of arbitrary depth two
Frobenius extensions. The corresponding Hopf-Galois extensions are partic-
ular cases of ×R-Hopf-Galois extensions in the Jones tower.

So it turned out that the intrinsic description of noncommutative principal
homogeneous spaces in terms of torsor structures is indeed of practical use.
It allowed us to recover ×R-Hopf algebras and ×R-Hopf-Galois extensions
from arbitrary depth two extensions.

While principal homogeneous spaces inherit their structure from the groups
that act on them, we can draw conclusions in the other direction: A non-
commutative torsor provides information about the Hopf algebras that coact
on it.



Appendix

We give a short exposition on some tools and notions that are used through-
out the main part of the text.

A Monoidal Categories

The theory of monoidal categories, or tensor categories (as they are some-
times called), was developed in the 1960’s. References are for instance [27]
and [23].

Definition A.1 A monoidal category (C,⊗, α, I, λ, ρ) consists of a category
C together with a bifunctor

⊗ : C × C −→ C , (A,B) 7→ A⊗B ,

a natural isomorphism

αA,B,C : (A⊗B)⊗ C −→ A⊗ (B ⊗ C) ,

a unit object I ∈ C and natural isomorphisms

λA : I ⊗ A −→ A

ρA : A⊗ I −→ A

such that the following coherence diagrams commute:
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((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D-αA,B,C⊗D

A⊗ ((B ⊗ C)⊗D)
?

αA,B⊗C,D

(A⊗B)⊗ (C ⊗D)
?

αA⊗B,C,D

A⊗ (B ⊗ (C ⊗D))

αA,B,C⊗D

Q
Q
Q
Q
Q
QQs

A⊗αB,C,D

�
�
�
�

�
��+

(A⊗ I)⊗B A⊗ (I ⊗B)-αA,I,B

A⊗B

ρA⊗B

Q
Q
Q
Q
Q
QQs

A⊗λB

�
�

�
�
�

��+

A monoidal category is called strict, if the coherence morphisms α, λ and ρ
are identities.

The standard example of a monoidal category is the categoryMk of modules
over a commutative ring k with the tensor product⊗k over k. The unit object
is of course k, and the tensor product is clearly associative.

Another example is the category RMR of bimodules over an arbitrary ring
R together with the tensor product over R.

Let B be a bialgebra over k. Then the category BM of left B-modules is
monoidal with the tensor product ⊗ = ⊗k of the underlying category Mk.
The tensor product U ⊗ V of two left B-modules U, V ∈ BM becomes a
B-module via the diagonal module structure b · (u⊗ v) = b(1) · u⊗ b(2) · v for
b ∈ B, u ∈ U, v ∈ V . The left B-module structure on the unit object k is
given as the trivial action of B via the counit ε.
Similarly, the categoryMB of right B-comodules is monoidal with the tensor
product over k. For X, Y ∈MB, the B-comodule structure on X ⊗ Y is the
codiagonal structure, given by δ(x⊗y) = x(0)⊗y(0)⊗x(1)y(1) for x ∈ X, y ∈ Y .
The unit object k has the trivial B-comodule structure δ(1) = 1 ⊗ 1B, that
is induced by the unit of B.

In all of the above examples, the coherence morphisms for the respective
monoidal category are trivial. In fact, as was proved for instance in [23],
every monoidal category is monoidally equivalent to a strict one. Another
result of [45] shows that each monoidal category, whose objects are sets with
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an algebraic structure, can be endowed with an isomorphic tensor product.
This tensor product is such that it makes the category into a strict monoidal
category. Therefore, one can usually omit denoting the coherence morphisms
at all, and treat all monoidal categories as if they were strict.

Definition A.2 Let (C,⊗, α, I, λ, ρ) and (D,�, α̃, J, λ̃, ρ̃) be monoidal cat-
egories. A monoidal functor F : C −→ D consists of a natural isomorphism

ξA,B : F(A)� F(B)
∼=−→ F(A⊗B)

and an isomorphism

ξ0 : J
∼=−→ F(I)

such that the following diagrams commute:

(F(A)� F(B))� F(C) F(A⊗B)� F(C)-ξ�1 F((A⊗B)⊗ C)-ξ

F(A)� (F(B)� F(C))
?

α̃

F(A)� F(B ⊗ C)-
1�ξ

F(A⊗ (B ⊗ C))-
ξ

?

F(α)

J � F(A) F(I)� F(A)-ξ0�1 F(I ⊗ A)-ξ

F(A)

λ̃

H
HHH

HHHHHj

F(λ)

�
���

������

F(A)� J F(A)� F(I)-1�ξ0 F(A⊗ I)-ξ

F(A)

ρ̃

HH
HHH

HHHHj

F(ρ)

��
���

�����

A monoidal functor (F , ξ, ξ0) is called strict, if ξ and ξ0 are identities.

For a bialgebra B, the forgetful functors BM −→ Mk and MB −→ Mk are
both monoidal and in fact strict. This property can be used to characterize
bialgebras, as was shown in [31]: A k-algebra A is a bialgebra if and only if
the category AM of A-modules is monoidal such that the forgetful functor

AM−→Mk is a monoidal functor.
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Definition A.3 A prebraiding for a monoidal category (C,⊗, α, I, λ, ρ) is a
natural transformation

σA,B : A⊗B B ⊗ A-∼= ,

that satisfies σA,I = σI,A = idA for the unit object I, and makes the following
diagrams commute:

A⊗ (B ⊗ C) (B ⊗ C)⊗ A-πA,B⊗C

B ⊗ (C ⊗ A)

α
@
@
@@R

B ⊗ (A⊗ C)

B⊗πA,C
�
�
���

(A⊗B)⊗ C

α

�
�
���

(B ⊗ A)⊗ C

πA,B⊗C
@
@
@@R

B ⊗ (A⊗ C)-
α

(A⊗B)⊗ C C ⊗ (A⊗B)-πA⊗B,C

(C ⊗ A)⊗B

α−1
@
@
@@R

(A⊗ C)⊗B

πA,C⊗B

�
�
���

A⊗ (B ⊗ C)

α−1

�
�
���

A⊗ (C ⊗B)

A⊗πB,C
@
@
@@R

(A⊗ C)⊗B-
α−1

A braiding for C is a prebraiding which is a natural isomorphism. A monoidal
category with a (pre-)braiding is called a (pre-)braided monoidal category.
A braiding σ with the property σ2 = id is called a symmetry.

The category Mk is braided, and in fact symmetric, with the twist

σ : V ⊗W −→ W ⊗ V , v ⊗ w 7→ w ⊗ v .

The category BM of modules over a bialgebra B is in general not braided.
However, one can construct a braiding that is based on the symmetry of the
underlying categoryMk, if B is a so-called quasitriangular bialgebra (see for
instance [28]).

Another important example of braided monoidal category is discussed in this
thesis. It is the category of Yetter-Drinfeld modules over a Hopf algebra H
introduced by Yetter in [60].
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B Graphical Calculus

For computations in monoidal categories one can employ the graphical no-
tation. This way of denoting morphisms in monoidal categories goes back to
Penrose [34] and was also applied by Yetter in [60]. It has the advantage of
not using “elements” in objects, and is thus valid in any monoidal category.

Let C be a strict monoidal category, and let A,B ∈ C. We denote a morphism
f : A −→ B as

f =

A

f

B

.

Given two morphisms f : A −→ C, g : B −→ D, we denote their tensor
product f ⊗ g : A⊗B −→ C ⊗D by

f ⊗ g =

A B

f⊗g

C D

:=

A B

f g

C D

.

The symbol ⊗ is understood implicitly by placing objects A,B next to each
other in the top and bottom row. Morphisms are denoted by boxed (or
circled) symbols that are connected with their respective domain and tar-
get. Due to the existence of coherence isomorphisms, the unit object of the
category is not denoted at all.

The composition of morphisms f : A −→ B, g : B −→ C is expressed by

g ◦ f =

A

f

g

C

.

We give a few examples of especially defined morphisms:
Let (A,∇, η) be an algebra in C. Then the multiplication ∇ : A ⊗ A −→ A
and the unit η : I −→ A are denoted by

∇ =
A A
	
A

and η = r
A

.
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Associativity of ∇ and the unit axioms read as

A A A
	

	
A

=

A A A
	

	
A

and

Ar
	
A

=

A

A

=

A r
	
A

.

Let M be a left A-module. Then the module structure map µ : A⊗M −→M
is denoted as

µ =

AM

PP

M

,

and it satisfies

A AM
	
PP

M

=

A AM
PP

PP

M

and

Mr
PP

M

=

M

M

.

Let (C,∆, ε) be a coalgebra in the category C. The graphical symbols for
the comultiplication and the counit are obtained by turning the symbols for
∇ and η upside down:

∆ =
C��
C C

and ε =
Cr

We do the same in order to obtain a notation for the comodule structure
map δ : N −→ C ⊗N of a left C-comodule N :

δ =

N

��

C N

For a Hopf algebra H with the antipode S : H −→ H, the antipode axiom
reads as

H��hS
	
H

=

Hr
r
H

=

H��hS
	
H

.
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In a braided monoidal category C, the braiding σA,B : A ⊗ B −→ B ⊗ A is
denoted by

σA,B =
A B

B A
with inverse σB,A =

B A

A B

.

If σ is moreover a symmetry, we use the notation

σA,B =
A B

B A

to express the fact that the inverse of σ is given by the same symbol.

C Duals and inner Hom-Functors

Definition C.1 Let C be a monoidal category and X ∈ C an object. An
object X∗ ∈ C together with a morphism ev : X ⊗X∗ −→ I is called a right
dual for M if there exists a morphism db : I −→ X∗ ⊗X such that

(X X ⊗X∗ ⊗X-X⊗db
X) = idX-ev⊗X

(X∗ X∗ ⊗X ⊗X∗-db⊗X∗
X∗) = idX∗-X∗⊗ev

The category C is called right rigid, if each object X ∈ C has a right dual.
The morphisms ev and db are called the evaluation resp. the dual basis.

Let k be a commutative ring. The categoryMk is in general not rigid. How-
ever, if a k-module V is finitely generated and projective then we know by the
dual basis lemma that there exist elements v1, . . . , vn ∈ V and v1, . . . , vn ∈
Homk(V, k) such that v =

∑
vi(v)vi for all v ∈ V . Then Homk(V, k) =: V ∗

is a right dual for V with the evaluation map and dual basis given by

ev : V ⊗ Homk(V, k) −→ k , v ⊗ f 7→ f(v)

db : k −→ Homk(V, k)⊗ V , 1 7→
∑

vi ⊗ vi .

Hence, the category Mf
k of finitely generated projective k-modules is rigid.

It follows in the same way that an R-bimodule M ∈ RMR over an arbitrary
ring R has a right dual if it is finitely generated and projective as a left
R-module. The right dual is M∗ = HomR(M,R).
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LetH be a Hopf algebra over k, and letN be a leftH-comodule that is finitely
generated and projective over k. We declare a left H-comodule structure on
the dual N∗ = Homk(N,K) by δ(f) := f(−1)⊗ f(0) for f ∈ Homk(N,K) such
that f(−1)f(0)(n) = S(n(−1))f(n(0)) for all n ∈ N . Then the evaluation and
dual basis maps are H-colinear, and N∗ is a dual for N in HM. In particular
it was shown in [56] that Hopf algebras can be characterized through this
property.

Let X∗ be a right dual for X ∈ C. Then it is easy to see that for all Y, Z ∈ C
the maps

Hom(X ⊗ Y, Z) −→ Hom(Y,X∗ ⊗ Z) , f 7→ (X∗ ⊗ f)(db⊗Y )

Hom(Y,X∗ ⊗ Z) −→ Hom(X ⊗ Y, Z) , g 7→ (ev⊗Z)(X ⊗ g)

are inverse to each other. This implies that the functor C −→ C , Z 7→ X∗⊗Z
is right adjoint to the functor C −→ C , Y 7→ X ⊗ Y .

If X ∈ C has a right dual, then it is uniquely determined up to isomorphism.
This follows from applying the above adjunction to the unit object I ∈ C.
Let C be a rigid monoidal category. Then we can define for each morphism
f : X −→ Y in C the transposed morphism

(f ∗ : Y ∗ X∗) :=-

(Y ∗ X∗ ⊗X ⊗ Y ∗-db⊗Y ∗
X∗ ⊗ Y ⊗ Y ∗-X∗⊗f⊗Y ∗

X∗) .-X∗⊗ev

This gives rise to a contravariant functor C −→ C , X 7→ X∗, the so-called
duality functor.

Graphically, the evaluation and dual basis in a rigid monoidal category are
denoted by

ev =
X X∗
	 and db = ��

X X∗

.

Then the two equations in the definition of a right dual read as

(ev⊗X)(X ⊗ db) =

X ��
	
X

=

X

X

= idX

and

(X∗ ⊗ ev)(db⊗X∗) =

X∗��
	
X∗

=

X∗

X∗

= idX∗ .
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The transposed morphism of f : X −→ Y is obtained as

f ∗ =

Y ∗��
f
	

X∗

.

In a rigid monoidal category C the functor C −→ C , Y 7→ X⊗Y is left adjoint
for each object X ∈ C. For categories that are not rigid, this property can
be used to obtain the following weaker concept of duality:

Definition C.2 Let C be a monoidal category and let X be an object of C.
If the functor C −→ C , Y 7→ X⊗Y is left adjoint, we denote its right adjoint
by C −→ C , Y 7→ hom(X, Y ) and call it a (left) inner hom-functor.
If the functor X ⊗ − is left adjoint for each X ∈ C, then the category C is
called left closed.

According to this definition, a right rigid monoidal category is called left
closed. Although this might seem a bit confusing and there exist in fact also
different names in the literature, we choose this definition to be consistent
with [43].

Since an inner hom-functor is always right adjoint by definition, it comes
together with an adjunction morphism

ev : X ⊗ hom(X, Y ) −→ Y

and has the following universal property: For each Z ∈ C and e : X⊗Z −→ Y
there exists a unique morphism ϕ : Z −→ hom(X, Y ) such that the diagram

X ⊗ Z X ⊗ hom(X,Y )-X⊗ϕ

Y

e

@
@
@
@@R

ev

�
�

�
��	

commutes.

Let H be a Hopf algebra over k. Then for two H-modules M,N ∈ HM, the
k-module Homk(M,N) of k-linear maps has an H-module structure defined
by

(h · f)(m) := h(1)f(S(h(2))m)

for h ∈ H, f ∈ Homk(M,N) and m ∈M . Thus, applying the standard hom-
tensor adjunction, we see that Homk(M,N) defines a left inner hom-functor
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in the category HM. This is also the left inner hom-functor in the underlying
category kM of k-modules. Such a situation can be expressed by saying that
the underlying functor HM−→ kM preserves left inner hom-functors:

Definition C.3 Let F : C −→ D be a monoidal functor between left closed
monoidal categories. By the universal property of the inner hom-functor in
D, there exists a unique morphism

ζ : F(hom(X, Y )) −→ hom(F(X),F(Y ))

for X, Y ∈ C, for which the diagram

F(X)⊗F(hom(X, Y )) F(X)⊗ hom(F(X),F(Y ))-F(X)⊗ζ

F(X ⊗ hom(X, Y ))
?

∼=

F(Y )-
F(ev)

?

ev

commutes. We say that the functor F preserves left inner hom-functors if ζ
is an isomorphism for all X, Y ∈ C.

D Cohomomorphism Objects of Diagrams

We summarize the definitions and main results about cohomomorphism ob-
jects and coendomorphism objects that are used in Chapter 2. We follow the
exposition given by Pareigis in [32].

LetM be a small symmetric monoidal abelian category with tensor product
⊗ : M×M −→ M, and assume that M is cocomplete and that colimits
commute with tensor products.
We consider two diagrams ω : C −→M and ν : C −→M, where C is another
small category. Such a diagram is called finite if it factors through the full
subcategory M0 of objects in M that possess duals as in Definition C.1.
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Theorem and Definition D.1 Let ω, ν : C −→M be two diagrams in M,
and let ν be finite. Then the set of all natural transformations Nat(ω,M⊗ν)
is representable as a functor in M .
The representing object is given as the difference cokernel of∐

f∈Mor(C) ω(dom(f))⊗ ν(cod(f))∗
∐

X∈Ob(C) ω(X)⊗ ν(X)∗ ,-
id⊗ν(f)∗

-ω(f)⊗id

where dom(f) and cod(f) denote the domain and codomain of the respective
morphism f . It is called the cohomomorphism object of ω and ν, and denoted
as cohom(ν, ω).
In case ω = ν, the representing object of Nat(ω,M ⊗ ω) is called coend(ω),
the coendomorphism object of ω.

We remark that the assumption on finiteness of the diagram ν is really just
needed to show the existence of the cohomomorphism object cohom(ν, ω).
Whenever a coendomorphism exists, it will satisfy the properties that we are
going to show in the sequel even without the condition that ν be finite.

If necessary, we are going to abbreviate the symbol cohom(ν, ω) by (ν, ω).

Since every representable functor gives rise to a universal problem, we obtain
that a cohomomorphism object satisfies the following universal property:

Corollary D.2 Let ω, ν : C −→ M be two diagrams and let ν be finite.
There is a natural transformation δ : ω −→ cohom(ν, ω) ⊗ ν such that for
each object M ∈ M and each natural transformation ϕ : ω −→ M ⊗ ν there
exists a unique morphism ϕ̃ : cohom(ν, ω) −→M such that the diagram

ω cohom(ν, ω)⊗ ν-δ

ϕ

HH
HHH

HHHHj
M ⊗ ν
?

ϕ̃

commutes.

Proof. The natural transformation δ : ω −→ cohom(ν, ω) ⊗ ν arises from
the composition

ω(X) ω(X)⊗ ν(X)∗ ⊗ ν(X)-id⊗ db
cohom(ν, ω)⊗ ν(X) .-ι(X,X)⊗id

for each X ∈ C. Now the universal property is just a translation of the
properties of a difference cokernel. 2
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Proposition D.3 Let ω, ν, τ : C −→M be diagrams in M, and let ν and τ
be finite. There is a comultiplication

∆ : cohom(ν, ω) cohom(τ, ω)⊗ cohom(ν, τ)-

which is coassociative in the sense that, given another finite diagram
ς : C −→M, the square

cohom(ν, ω) cohom(τ, ω)⊗ cohom(ν, τ)-∆

cohom(ς, ω)⊗ cohom(ν, ς)
?

∆

cohom(ς, ω)⊗ cohom(τ, ς)⊗ cohom(ν, τ)-id⊗∆
?

∆⊗id

commutes.

Proof. We define the morphism ∆ via the universal property described in
Proposition D.2. It is induced by the diagram

ω cohom(ν, ω)⊗ ν-δ

cohom(τ, ω)⊗ τ
?

δ

cohom(τ, ω)⊗ cohom(ν, τ)⊗ ν-id⊗δ ?

∆⊗id

For coassociativity, we consider the following two commutative diagrams
(note that we abbreviate cohom(ν, ω) := (ν, ω)):

ω (ν, ω)⊗ ν-δ

(τ, ω)⊗ τ
?

δ

(τ, ω)⊗ (ν, τ)⊗ ν-id⊗δ ?

∆⊗id

(ς, ω)⊗ (τ, ς)⊗ τ
?

∆⊗id

(ς, ω)⊗ (τ, ς)⊗ (ν, τ)⊗ ν-id⊗ id⊗δ ?

∆⊗id⊗ id
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ω (ν, ω)⊗ ν-δ

(ς, ω)⊗ ς
?

δ

(ς, ω)⊗ (ν, ς)⊗ ν-id⊗δ ?

∆⊗id

(ς, ω)⊗ (τ, ς)⊗ τ
?

id⊗δ

(ς, ω)⊗ (τ, ς)⊗ (ν, τ)⊗ ν-id⊗ id⊗δ ?

id⊗∆⊗id

By the universal property of cohomomorphism objects, we just have to show
that the morphisms on the left hand sides of both squares are equal, i.e. that
the diagram

ω cohom(τ, ω)⊗ τ-δ

cohom(ς, ω)⊗ ς
?

δ

cohom(ς, ω)⊗ cohom(τ, ς)⊗ τ-
id⊗δ

?

∆⊗id

commutes. But this follows from the definition of ∆. 2

Remark D.4 If ν = ω = τ , then the above proposition shows that
coend(ω) has a coassociative comultiplication ∆ : coend(ω) −→ coend(ω) ⊗
coend(ω). There also exists a counit ε : coend(ω) −→ I, which is defined by

ω coend(ω)⊗ ω-δ

I ⊗ ω

∼=

H
HHH

HHHHHj ?

ε⊗id

such that ∆ is counitary. Hence, coend(ω) has the structure of a coalgebra. It
can easily be verified that cohom(ν, ω) is a (coend(ω), coend(ν))-bicomodule
with the following multiplications from Proposition D.3:

∆ω : cohom(ν, ω) −→ coend(ω)⊗ cohom(ν, ω)

∆ν : cohom(ν, ω) −→ cohom(ν, ω)⊗ coend(ν)

It can be shown that coend(ω) is the universal coalgebra such that all objects
ω(X) are comodules over coend(ω) and all morphisms ω(f) are comodule
homomorphisms.
This leads to the following reconstruction theorem:
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Theorem D.5 Let C be a coalgebra in M and let υ : CM −→ M be the
forgetful functor. Then C ∼= coend(υ) as coalgebras.

Morphisms of cohomomorphism objects arise as follows:

Proposition D.6 Let ω, ν : C −→ M be finite diagrams and let F : D
−→ C be a functor. Then F induces a morphism φ : cohom(νF , ωF) −→
cohom(ν, ω) that is compatible with the comultiplication on cohoms described
in Proposition D.3.
In particular, F induces a coalgebra morphism coend(ωF) −→ coend(ω).

Proof. The morphism φ : cohom(νF , ωF) −→ cohom(ν, ω) is obtained by
the universal property of cohom(νF , ωF) from

ωF cohom(νF , ωF)⊗ νF-δ

cohom(ν, ω)⊗ νF

δF

HH
HHHH

HHHj ?

φ⊗id

Its properties follow from the universal properties of the respective cohomo-
morphism objects. 2

Corollary D.7 Let ω, ν : C −→ M be finite diagrams and let F : D −→ C
be an equivalence. Then the map φ : cohom(νF , ωF) −→ cohom(ν, ω) is an
isomorphism.

For the rest of this section we assume that the base categoryM is symmetric.
This additional structure provides additional properties for the cohomomor-
phism objects cohom(ν, ω).

Definition D.8 Let ω : C −→ M be a diagram in M. Assume that C is
a monoidal category and that ω is a monoidal functor. Then ω is called a
monoidal diagram.

Definition D.9 Let ω, ν : C −→ M be monoidal diagrams in M and let
A ∈ C be an algebra. A natural transformation ϕ : ω −→ A ⊗ ν is called
monoidal, if the diagrams

ω(X)⊗ ω(Y ) A⊗ A⊗ ν(X)⊗ ν(Y )-ϕ(X)⊗ϕ(Y )

ω(X ⊗ Y )
?

ξ

A⊗ ν(X ⊗ Y )-ϕ(X⊗Y ) ?

∇⊗ξ
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and
I I ⊗ I-∼=

ω(I)
?

ξ0

A⊗ ν(I)-ϕ(I) ?

η⊗ξ0

commute.

We define the tensor product of two diagrams ω : C −→M and ν : D −→M
in M by

ω ⊗ ν : C × D −→M , (ω ⊗ ν)(X, Y ) := ω(X)⊗ ν(Y ) .

The tensor product of two diagrams can be viewed as the diagram consisting
of all the tensor products of all the objects of the first diagram and all the
objects of the second diagram.
For the corresponding cohoms we have:

Proposition D.10 Let ω, ν : C −→ M and ς, τ : D −→ M be diagrams in
M and let ν and τ be finite. Then

cohom(ν ⊗ τ, ω ⊗ ς) ∼= cohom(ν, ω)⊗ cohom(τ, ς) .

Corollary D.11 Under the assumptions of Proposition D.10 there is a nat-
ural transformation

δ : ω ⊗ ς −→ cohom(ν, ω)⊗ cohom(τ, ς)⊗ ν ⊗ τ ,

such that for each object M ∈ C and each natural transformation ϕ : ω ⊗ ς
−→M ⊗ ν ⊗ τ there exists a unique morphism ϕ̃ : cohom(ν, ω)⊗ cohom(τ, ς)
−→M such that the diagram

ω ⊗ ς cohom(ν, ω)⊗ cohom(τ, ς)⊗ ν ⊗ τ-δ

M ⊗ ν ⊗ τ

ϕ

HHH
HHH

HHHHHj
M ⊗ ν ⊗ τ

?

ϕ̃⊗id

commutes.

Theorem D.12 Let ω, ν : C −→ M be diagrams in M and let ν be finite.
Then cohom(ν, ω) is an algebra and δ : ω −→ cohom(ν, ω)⊗ ν is a monoidal
natural transformation..
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Proof. The multiplication on cohom(ν, ω) results from the diagram

ω(X)⊗ ω(Y ) cohom(ν, ω)⊗ cohom(ν, ω)⊗ ν(X)⊗ ν(Y )-δ⊗δ

ω(X ⊗ Y )
?

ξ

cohom(ν, ω)⊗ ν(X ⊗ Y )-δ
?

∇⊗ξ

together with Proposition D.10. For the unit we consider the diagram ω0 : C0

−→M, where C0 is the category with just one object J and just one morphism
id : J −→ J , such that ω0(J) = I. Then the universal map δ0 : ω0(J)
−→ coend(ω0)⊗ω0(J) is equal to the isomorphism I −→ I⊗I and the following
diagram induces a morphism η : I −→ cohom(ν, ω):

I I ⊗ I-δ0

ω(I)
?

ξ0

cohom(ν, ω)⊗ ν(I)-δ(I) ?

η⊗ξ0

Now we deduce from the commutative diagram

ω(X)⊗ I cohom(ν, ω)⊗ I ⊗ ν(X)⊗ I-δ⊗δ0

?

id⊗ id

?

id⊗η⊗id⊗ id

ω(X)⊗ ω0(J) cohom(ν, ω)⊗ cohom(ν, ω)⊗ ν(X)⊗ I-δ⊗δ0

ω(X)
?

∼=

cohom(ν, ω)⊗ ν(X)-δ
?

∇⊗∼=

that η is a right unit for ∇. In the same way we can see that η is a left unit
and that ∇ is associative. Now it is clear that δ : ω −→ cohom(ν, ω)⊗ ν is a
monoidal natural transformation. 2

Corollary D.13 Let ω, ν, τ : C −→ M be monoidal diagrams in M and let
ν and τ be finite. Then the comultiplication

∆ : cohom(ν, ω) −→ cohom(τ, ω)⊗ cohom(ν, τ)

from Proposition D.3 and the counit ε : cohom(ν, ω) −→ I from Remark D.4
are algebra morphisms.
Thus, if ω is finite, coend(ω) and coend(ν) are bialgebras and cohom(ν, ω)
is a (coend(ω), coend(ν))-bicomodule algebra.
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It turns out that the universal property of cohomomorphism objects holds
even with respect to comodule algebras and algebra morphisms:

Corollary D.14 Let ω, ν : C −→ M be monoidal diagrams and let ν be
finite. There is a monoidal natural transformation δ : ω −→ cohom(ν, ω)⊗ ν
such that for each algebra A ∈M and each monoidal natural transformation
ϕ : ω −→ A⊗ ν there exists a unique algebra morphism ϕ̃ : cohom(ν, ω) −→ A
such that the diagram

ω cohom(ν, ω)⊗ ν-δ

ϕ

HHH
HHHH

HHj
A⊗ ν
?

ϕ̃

commutes.

Altogether we conclude:

Corollary D.15 For diagrams ω, ν : C −→ M, with ν finite and M ∈ M,
there is a natural isomorphism

Nat(ω,M ⊗ ν) ∼= Mor(cohom(ν, ω),M) .

If the diagrams are monoidal and A ∈ M is an algebra, then there is a
natural isomorphism

Nat⊗(ω,A⊗ ν) ∼= Alg(cohom(ν, ω), A) .

The essence of these results lies in the Tannaka-duality from Theorem D.5.
It says that if all representations of a coalgebra resp. bialgebra are known,
then the coalgebra resp. bialgebra itself can be recovered:

Theorem D.16 (Tannaka duality) Let C be a coalgebra in M and let
υ :MC −→M be the forgetful functor. Then C ∼= coend(υ) as coalgebras. If
moreover C is a bialgebra and υ is a monoidal functor, then C ∼= coend(υ)
as bialgebras.
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E Faithfully Flat Descent

We give a brief overview of the mechanism of faithfully flat descent for ex-
tensions of noncommutative algebras. We following [41], which itself refers
to [2]. Below, we concentrate on left descent data. In the main part of the
text we will also apply their right version.

Definition E.1 Let η : R ⊂ S be a ring extension. A (left) descent data
from S to R is a left S-module M together with an S-module homomorphism
D : M −→ S ⊗RM making the diagrams

M S ⊗RM-D

S ⊗RM
?

D

S ⊗R S ⊗RM-
S⊗Rη⊗RM

?

S⊗RD

M S ⊗RM-D

M
?

mid

@
@
@
@
@R

commute, where the map m : S⊗RM −→M is induced by the left S-module
structure on M .

Descent data (M,D) from S to R form a category. If N is a left R-module,
then the map

D : S ⊗R N −→ S ⊗R S ⊗R N , s⊗ n 7→ s⊗ 1⊗ n

defines a left descent data on the induced S-module S ⊗R N . This leads to
a functor from RM to the category of descent data from S to R.

Theorem E.2 (Faithfully flat descent) Let η : R ⊂ S be an inclusion of
rings such that S is faithfully flat as a right R-module.

Then the canonical functor from RM to the category of descent data from S
to R is an equivalence of categories. The inverse equivalence maps a descent
data (M,D) to

DM := {m ∈M | D(m) = 1⊗m} .

In particular, for every descent data (M,D), the map

f : S ⊗RMD −→M , s⊗m 7→ sm

is an isomorphism with inverse induced by D. That is f−1(m) = D(m) ∈
S ⊗RMD ⊂ S ⊗RM .
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[17] A. Grothendieck: Schémas en Groupes II (SGA 3), Lecture Notes in
Mathematics vol. 152, Springer-Verlag Berlin 1970.

[18] C. Grunspan: Quantum Torsors, J. Pure Appl. Algebra 184 (2003),
229-255.

[19] V.F.R. Jones: Index for subfactors, Invent. Math. 72 (1983), 1-25.

[20] L. Kadison: Hopf Algebroids, Galois Extensions and a Galois Corre-
spondence, MPS preprint 020020426, to appear in the Bulletin of the
Belgian Mathematical Society.

[21] L. Kadison, D. Nikshych: Hopf Algebra actions on strongly separable
extensions of depth two, Adv. in Math. 163 (2001), 258-286.

[22] L. Kadison, K. Szlachányi: Bialgebroid actions on depth two extensions
and duality, Adv. in Math. 179 (2003), 75-121.

[23] C. Kassel: Quantum Groups, Graduate Texts in Mathematics 155,
Springer-Verlag New York 1995.

[24] M. Kontsevich: Operads and Motives in Deformation Quantization,
Lett. Math. Phys. 48 (1999), 35-72.

[25] H.F. Kreimer, M. Takeuchi: Hopf algebras and Galois extensions of an
algebra, Indiana Univ. Math. J. 30 (1981), 675-692.

[26] J.-H. Lu: Hopf algebroids and quantum groupoids, Internat. J. Math. 7
(1996), 47-70.

[27] S. Mac Lane: Categories for the Working Mathematician, Graduate
Texts in Mathematics 5, Springer-Verlag New York 1970.



Bibliography 185

[28] S. Montgomery: Hopf Algebras and Their Actions on Rings, CBMS
Regional Conference Series in Mathematics vol. 82, AMS, Providence,
Rhode Island 1993.

[29] D. Mumford, J. Fogarty: Geometric Invariant Theory, Springer-Verlag
Berlin 1982.

[30] D. Nikshych: A duality theorem for quantum groupoids, in: N. An-
druskiewitsch, W.R. Ferrer Santos, H.-J. Schneider (Eds.) New Trends
in Hopf Algebra Theory, Contemporary Mathematics vol. 267, AMS,
Providence, Rhode Island 2000.

[31] B. Pareigis: A non-commutative, non-cocommutative Hopf algebra in
“nature”, J. Algebra 70 (1981), 356-374.

[32] B. Pareigis: Endomorphism Bialgebras of Diagrams and of Non-
Commutative Algebras and Spaces, in: Advances in Hopf algebras, Lec-
ture Notes in Pure and Applied Mathematics vol. 158, Marcel Dekker
(1994), 153-186.

[33] B. Pareigis: Lectures on Quantum Groups, available online.

[34] R. Penrose: Applications of negative dimensional tensors, in: Combina-
torial Mathematics and its Applications, 221-244, Academic Press, New
York 1971.

[35] S. Popa: Classification of Subfactors and their Endomorphisms, CBMS
Regional Conference Series in Mathematics vol. 86, AMS, Providence,
Rhode Island 1995.

[36] N. Saavedra Rivano: Catégories Tannakiennes, Lecture Notes in Math-
ematics vol. 265, Springer-Verlag Berlin 1970.

[37] P. Schauenburg: Hopf bimodules over Hopf-Galois extensions,
Miyashita-Ulbrich actions, and monoidal center constructions,
Comm. Algebra 24 (1996), 143-163.

[38] P. Schauenburg: Hopf Bigalois Extensions, Comm. Algebra 24 (1996),
3797-3825.

[39] P. Schauenburg: Bialgebras over noncommutative rings and a structure
theorem for Hopf bimodules, Appl. Categorical Structures 6 (1998), 193-
222.

[40] P. Schauenburg: Quantum Torsors and Hopf-Galois Objects, preprint.



186 Bibliography

[41] P. Schauenburg: Quantum Torsors with fewer axioms, preprint.

[42] P. Schauenburg: Hopf-Galois and Bi-Galois Extensions, to appear in
Fields Institute Communications.

[43] P. Schauenburg: Duals and doubles of quantum groupoids (×R-Hopf
algebras), in: N. Andruskiewitsch, W.R. Ferrer Santos, H.-J. Schneider
(Eds.) New Trends in Hopf Algebra Theory, Contemporary Mathematics
vol. 267, AMS, Providence, Rhode Island 2000.

[44] P. Schauenburg: Weak Hopf algebras and quantum groupoids, Banach
Center Publications 61 (2003), 171-188.

[45] P. Schauenburg: Turning monoidal categories into strict ones, New York
J. Math. 7 (2001), 257-265.

[46] H.-J. Schneider: Principal homogeneous spaces for arbitrary Hopf Alge-
bras, Israel J. Math. 72 (1990), 167-195.

[47] H.-J. Schneider: Representation theory of Hopf-Galois extensions, Israel
J. Math. 72 (1990), 196-231.

[48] J. P. Serre: Galois Cohomology, Springer-Verlag Berlin 1997.

[49] M.E. Sweedler: Hopf algebras, Benjamin New York 1969.

[50] M.E. Sweedler: Groups of simple algebras, Publ. Math. I.H.E.S. 44
(1974), 79-189.

[51] M. Takeuchi: Free Hopf algebras generated by coalgebras,
J. Math. Soc. Japan 23 (1971), 561-582.

[52] M. Takeuchi : Groups of algebras over A ⊗ Ā, J. Math. Soc. Japan 29
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