AB Geometrie & Topologie

Stephan Stadler Phillip Grass Markus Nöth

Analysis einer Variablen

ÜBUNGSBLATT 7

Abgabe Di 05.12.17, 14 Uhr.

- 1. Gegeben sei eine beliebige reelle Folge $(a_n)_{n\in\mathbb{N}}$. Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ eine Teilfolge besitzt, die in \mathbb{R} konvergiert oder bestimmt gegen $+\infty$ bzw. $-\infty$ divergiert.
- 2. (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen mit $\lim_{n\to\infty} a_n = a \in \mathbb{R}$. Zeigen Sie, dass jede Teilfolge von $(a_n)_{n\in\mathbb{N}}$ ebenfalls gegen a konvergiert. Folgern Sie, dass jede konvergente Folge genau einen Häufungspunkt besitzt, nämlich den Grenzwert der Folge.
 - (b) Sei $(b_n)_{n\in\mathbb{N}}$ eine beschränkte reelle Folge mit $\overline{\lim_{n\to\infty}}b_n=\underline{\lim_{n\to\infty}}b_n$. Zeigen Sie, dass $(b_n)_{n\in\mathbb{N}}$ konvergiert.
- 3. Durch die Vorschrift $a_{n+1} := 4 \frac{1}{a_n}$ für alle $n \in \mathbb{N}$ und $a_1 := 1$ sei rekursiv die reelle Folge $(a_n)_{n \in \mathbb{N}}$ definiert.
 - (a) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende und beschränkte Folge ist und folgern Sie, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert.
 - (b) Begründen Sie, dass die Folge $(a_{n+1})_{n\in\mathbb{N}}$ ebenfalls konvergiert und verwenden Sie dies zusammen mit der Rekursionsvorschrift und den Rechenregeln für Grenzwerte, um den Grenzwert von $(a_n)_{n\in\mathbb{N}}$ zu bestimmen.

Hinweis: Um in Teil (a) induktiv zu zeigen, dass $a_{n+1} - a_n \ge 0$ für alle $n \in \mathbb{N}$, kann es hilfreich sein, sowohl a_{n+1} als auch a_n mittels Rekursionsvorschrift zu ersetzen und den sich ergebenden Ausdruck durch die Induktionsvoraussetzung abzuschätzen.

- 4. (a) Bestimmen Sie alle Häufungspunkte der komplexen Folge $(\zeta^n)_{n\in\mathbb{N}}$, wobei $\zeta := \frac{1}{2}(-1+i\sqrt{3})$ die dritte Einheitswurzel bezeichnet.
 - (b) Gegeben sei die reelle Folge $\left((-1)^{\lfloor \frac{n}{3}\rfloor}(5+(-1)^n)\right)_{n\in\mathbb{N}}$, wobei $\lfloor x\rfloor$ die größte ganze Zahl bezeichnet, die kleiner oder gleich $x\in\mathbb{R}$ ist, beziehungsweise $\lfloor x\rfloor:=\max\{k\in\mathbb{Z}\mid k\leq x\}$. Bestimmen Sie alle Häufungspunkte dieser Folge.