AB Geometrie & Topologie

Stephan Stadler Phillip Grass Markus Nöth

Analysis einer Variablen

ÜBUNGSBLATT 4

Abgabe Di 14.11.17, 14 Uhr.

- 1. Zeigen Sie, dass für jede nichtleere, nach unten beschränkte Teilmenge $M \subseteq \mathbb{R}$ das Infimum inf $M \in \mathbb{R}$ existiert.
- 2. (a) Gegeben seien die nichtleeren und nach oben beschränkten Teilmengen $A, B \subseteq \mathbb{R}$. Zeigen Sie, dass das Supremum $\sup\{(a+b) \in \mathbb{R} \mid a \in A, b \in B\}$ existiert und dass

$$\sup\{(a+b) \in \mathbb{R} \mid a \in A, b \in B\} = \sup A + \sup B.$$

- (b) Sei zudem $C \subseteq \mathbb{R}$ nichtleer und beschränkt. Begründen Sie, ob das Supremum der Menge $\{x^2 \in \mathbb{R} \mid x \in C\}$ existiert und geben Sie es gegebenenfalls an.
- 3. In der Vorlesung wurde gezeigt, dass die Gleichung $x^2=a$ für beliebiges $a\in\mathbb{R}, a\geq 0$ eine reelle Lösung besitzt.
 - (a) Zeigen Sie ebenso, dass für jedes $b \in \mathbb{R}, \ b \ge 0$ ein $x \in \mathbb{R}$ existiert, so dass $x^3 = b$.
 - (b) Folgern Sie, dass die Aussage aus Teil (a) gültig bleibt, wenn die Bedingung $b \ge 0$ weggelassen wird.
- 4. Gegeben seien für $n \in \mathbb{N}$ die Intervalle $I_n := [-1, 1 + \frac{1}{n})$ und $J_n := [\frac{1}{n^2}, n]$. Untersuchen Sie jeweils, ob für die folgenden Mengen das Infimum, Minimum, Supremum oder Maximum existiert und bestimmen Sie es gegebenenfalls.
 - (a) $\bigcap_{n\in\mathbb{N}} I_n := \{x \in \mathbb{R} \mid \forall n \in \mathbb{N} \text{ gilt } x \in I_n\}$
 - (b) $\bigcup_{n\in\mathbb{N}} J_n := \{x \in \mathbb{R} \mid \text{Es existiert } n \in \mathbb{N}, \text{ so dass } x \in J_n\}$