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Problem 1. ...
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Problem 3. [2 + 3 + 2 + 3 points]
Give brief and precise answers to the following short questions.

a) Let N ∈ N be even. N classical particles can each be either in state 1 or in state 2. A
particle in state 1 has energy E and one in state 2 has energy 2E. Compute the Boltzmann
entropy of the macrostateM1 with total energy 3

2
NE and of the macrostateM2 with total

energy NE.

b) Assume we have 1000 particles which are each in one of 2 boxes. The probability for
each particle to be in the right box is 1

3
, independently of each other. Use Chebyshev’s

inequality to give an upper bound for the probability that the fraction of particles in the
left box is smaller than 1

2
. Then state how one could improve this bound (A keyword

suffices).

c) Consider the dynamical system (Ω,B(Ω), µ, T ) given by the free Hamiltonian evolution
T of an ideal gas of N particles on a torus T 3, the microcanonical (Lebesgue) measure µ
on Ω and Ω = (T 3)N × E , where

E = {(p1, ..., p3N) ∈ R3N |
3N∑
i=1

p2i
2m

= E}

is the energy shell. Is this system ergodic? Prove your answer!

d) In which dimensions does Bose-Einstein condensation occur for a gas of free bosons with
a relativistic dispersion, i.e. one-particle Hamiltonian H =

√
−4? Give a short argument,

not a rigorous proof.

Solution of a) If n particles are in state 1, the number of possibilites is given by the binomial
coefficient W = N !

n!(N−n)! . Moreover, the total energy is nE + 2(N − n)E = 2NE − nE. In

macrostate M1, this implies n = N
2
, so S = kB ln(W ) = kB ln

(
N !

(N/2)!(N/2)!

)
= kB lnN ! −

2kB ln(N/2)!. In macrostate M2, all particles are in state 1, so W = 1 and S = 0.
Solution of b) The particles can be referred to by random variables Xi : Γ→ {0, 1} (1 for being
in the right box) which are i.i.d. with Bernoulli distribution, E(Xi) = p = 1

3
, Var(Xi) = pq = 2

9
.

The variable X̄ = 1
N

∑N
k=1Xk then has E(X̄) = p = 1

3
, Var(X̄) = pq

N
= 2

9N
. Then we use

Chebyshev:

P(left <
1

2
) ≤ P(|X̄ − 1

3
| > 1

6
) ≤ 2

9N · 1
62

=
8

1000
=

1

125

A better bound can be obtained by using higher moments in the Markov inequality.
Solution of c) This system is not ergodic. The momentum components of each particle cannot
change during the time evolution, so the set A := {(q1, ...q3N , p1, ..., p3N) ∈ Ω|a ≤ p1 ≤ b}
is invariant, but has for suitable choice of a and b a measure 0 < µ(A) < 1, contradicting
ergodicity.
Solution of d) On the exercise sheet, we have seen that the relative occupation number in the
ground state is bounded from below as follows:

lim
n→∞

n0

N
≥ 1− C

∫
ddk

e−βE(k)

1− e−βE(k)



In our case, we have E(k) ∼ |k|. The ground state is macroscopically occupied iff the following
integral converges: ∫

ddk
e−β|k|

1− e−β|k|
∼ C

∫ ∞
0

dxxd−1
e−βx

1− e−βx

At ∞, the exponential drops fast enough so there is never a problem. In a vicinity of 0, the
integrand behaves like xd−2. Therefore, the integral converges iff d ≥ 2. This means we expect
BEC in d ≥ 2.



Name:

Problem 4. [5 + 5 points]
Consider the dynamical system given by the probabiliy space (Ω,B(Ω),P) and a continuous
map T : Ω→ Ω that preserves P.

a) Prove that ergodicity of this dynamical system is equivalent to the following property:
For all A ∈ B(Ω) with P(A) > 0, we have

P

(
∞⋃

k=2016

T−k(A)

)
= 1.

b) Now suppose Ω is a compact metric space, P is ergodic and satisfies P(U) > 0 for every
non-empty open set U . Prove that almost every x ∈ Ω has a dense orbit.
Hint: Use the well-known fact that a compact metric space has a countable base for its
topology. (Recall that a base B for a topology is a collection of open sets such that any
open set can be written as a union of sets in B.)

Solution of a) Direction ⇐: Let A ∈ A be invariant and P(A) > 0. Then, P(∪∞k=0T
−k(A)) =

P(A) = 1, which shows ergodicity.
Direction⇒: LetA ∈ A with P(A) > 0. CallB := (∪∞k=2016T

−k(A)), then T−1(B) = T−1(∪∞k=2016T
−k(A)) =

∪∞k=2017T
−k(A) . So we have T−1(B) ⊂ B. Also, by measure invariance, P(T−1(B)) = P(B),

which implies
P(B \ T−1(B)) = P(B)− P(T−1(B)) = 0.

So B is invariant up to a set of measure zero and has positive measure, which implies P(B) = 1,
which is the claim. QED.

Solution of b) It is known (given) that a compact metric space has a countable base for its
topology. Let’s call this (Un)n∈N. Since any open set is a union of base elements, a point x ∈ X
has dense orbit O(x) iff O(x) ∩ Un 6= ∅ ∀n ∈ N. Therefore, it has no dense orbit if there exists
n ∈ N with O(x) ∩ Un = ∅. So we may write the set of all x which have no dense orbits as
follows:

A := {x ∈ X|O(X) not dense} = ∪n∈N
(
∪∞k=0T

−k(Un)
)c

The second equality also establishes that A is measurable. By ergodicity and the property
P(Un) > 0, it follows that P(∪∞k=0T

−k(Un)) = 1. Therefore,

P(A) ≤
∞∑
n=0

P
((
∪∞k=0T

−k(Un)
)c)

=
∞∑
n=0

0 = 0.

Therefore, P(A) = 0 and almost every x ∈ X has a dense orbit. QED.
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Problem 5. [7 + 3 points]
In the derivation of effective equations like the Hartree equation, one encounters terms like the
following:

T := 〈ψ, q1q2V (x1 − x2)p1p2ψ〉 .
Here, ψ ∈ L2(R3N) is a normalized bosonic (symmetric) wave function, V is a real-valued
function that satisfies ‖V ‖∞ < ∞, pj = |ϕ〉 〈ϕ| (xj) is the projector on the one-particle wave
function ϕ ∈ L2(R3) in the xj-coordinate and qj = 1− pj. We define

α(ψ) := 〈ψ, q1ψ〉 .

a) Prove that there is C ∈ R such that

|T | ≤ C

(
1

N
+ α(ψ)

)
.

b) In the derivation of effective equations, one wants to show that the full N -particle wa-
ve function ψt stays close to a product of one particle wave functions ϕt. Explain by
means of a simple example why closeness in the sense of L2-norm is usually a too strong
requirement. Which notion of closeness can be used instead?

Solution of a) Abbreviation: Vjk = V (xj − xk).

|T | = |〈ψ, q1q2V12p1p2ψ〉|

=

∣∣∣∣∣ 1

N − 1

〈
q1ψ,

N∑
j=2

qjV1jp1pjψ

〉∣∣∣∣∣
Cauchy Schwarz

≤ 1

N − 1
‖q1ψ‖‖χ‖

where χ :=
∑N

j=2 qjV1jp1pjψ. Note that ‖q1ψ‖ =
√
〈q1ψ, q1ψ〉 =

√
α.

‖χ‖2 =
N∑

j,k=2

〈ψ, pjp1V1jqjqkV1kp1pkψ〉

= |
∑
j 6=k

〈ψ, pjp1V1jqjqkV1kp1pkψ〉+
N∑
k=2

〈ψ, pkp1V1kqkV1kp1pkψ〉 |

= |
∑
j 6=k

〈qkψ, pjp1V1jV1kp1pkqjψ〉+
N∑
k=2

〈ψ, pkp1V1kqkV1kp1pkψ〉 |

≤ (N − 1)2|q1ψ|2|p2p1|2op|V |2op + (N − 1)|q1|op|p2p1|2op|V |2op
≤ (N − 1)2|V |2∞α + (N − 1)|V |2∞

Therefore,

|T | ≤ 1

N − 1

√
α
[
(N − 1)2|V |2∞α + (N − 1)|V |2∞

]1
2

≤
√
α

N − 1

[
(N − 1)|V |∞

√
α +

√
(N − 1)|V |∞

]
≤ C1α + C2

1√
N

√
α ≤ C

(
1

N
+ α

)



Here we used the facts that √
a+ b ≤

√
a+
√
b

as well as
2ab ≤ a2 + b2.

Solution of b) We want to express ψ(x1, ...xN) ∼
∏N

j=1 ϕ(xj) for large particle numbers. It will
almost never be the case that all of the particles are in the right state (e.g. the condensate) but
only the overwhelming majority. Therefore, a state like

ψ̃ =
N−1∏
1

ϕ(xj)⊗ ϕ⊥(xN)

with ϕ⊥ ⊥ ϕ should be considered close to a full product. But the L2-norms are quite different:∥∥∥∥∥
N∏
j=1

ϕ(xj)− ψ̃

∥∥∥∥∥
2

2

= 1 · 〈ϕ− ϕ⊥, ϕ− ϕ⊥〉 = 2,

independent of the particle number. Instead, we may use closeness of the reduced density
matrices in trace norm ∥∥µψ − |ϕ〉 〈ϕ| ∥∥

tr
,

or equivalently, smallness of α, as a good notion for closeness. There, the difference between ψ̃
and a full product would be of order 1

N
.


