LMU Munich Summer term 2016

Exercises on Mathematical Statistical Physics Physics Sheet 4

Problem 1 (Two Particle Problem). We consider two electrons in two dimensions in the presence of a perpendicular uniform magnetic field interacting via a potential $V(\vec{r_1} - \vec{r_2})$. The two-body Hamiltonian is:

$$H = \hbar\omega_c (a_1^{\dagger}a_1 + a_2^{\dagger}a_2) + V(\vec{r}_1 - \vec{r}_2),$$

where a_i are the individual ladder operators we defined in class and $\vec{r_i}$ are the particle coordinates. Let us define ladder operators $a_R(a_R^{\dagger})$ and $a_r(a_r^{\dagger})$ for the center of mass and the relative particle, respectively, in the form

$$a_R = \frac{a_1 + a_2}{\sqrt{2}} \tag{1}$$

$$a_r = \frac{a_1 - a_2}{\sqrt{2}}.$$
 (2)

- (a) Show that the center of mass operators commute with the relative particle ones. Show that $H = \hbar \omega_c (a_B^{\dagger} a_B + a_r^{\dagger} a_r) + V(\vec{r_1} - \vec{r_2}).$
- (b) Let us define center orbit ladder operators b_R, b_r for the center of mass and the relative coordinate, related to the individual ladder operators b_i in the same way as for a_R, a_r above. Consider the symmetric gauge. Show that b_r only involves the relative coordinate $z = z_1 z_2$ and that its spatial form is identical to the one of the one-particle operator b_i with the replacements $z_i \to z$ and $\ell \to \ell_r = \sqrt{2}\ell$. Similarly, show that b_R only involves the center of mass coordinate $Z = (z_1 + z_2)/2$, and that the effective magnetic length is $\ell_R = \ell/\sqrt{2}$.
- (c) Write down the expression for the two-body eigenstates of Hamiltonian H in the lowest Landau level. What are the corresponding eigenvalues E_k ? If the number of fluxes piercing the sample is N_{ϕ} , what is the degeneracy g_k of each eigenvalue? Check that the total number of two-particle states within the lowest Landau level coincides with $\sum_k g_k$.
- (d) Express the exact lowest Landau level two-body eigenstate

$$\psi(z_1, z_2) = (z_1 - z_2)^3 e^{-\frac{|z_1|^2 + |z_2|^2}{4}}$$

in terms of the basis of all possible two-body Slater determinants.

Problem2 (Laughlin states). Let us consider the Laughlin state at filling factor $\nu = 1/m$:

$$\Psi = \alpha \prod_{i < j}^{N} (z_i - z_j)^m e^{-\sum_i^N |z_i|^2/4},$$

where α is the corresponding normalization factor, $z = (x + iy)/\ell$ and N is the number of particles.

- (a) Estimate the number of different Slater determinants that participate in the state Ψ . How does this number behave as the number of particles increases?
- (b) Consider the problem of encoding the many-body state Ψ in a classical computer. How do memory resources needed increase with the number of particles?
- (c) Consider the problem of calculating the normalization factor α . Estimate the complexity of this calculation as a function of the number of particles.

Problem 3 (Bosonic Laughlin states). Let us consider the bosonic Laughlin state

$$\Psi = \alpha \prod_{i < j}^{N} (z_i - z_j)^2 e^{-\sum_i^{N} |z_i|^2/2},$$

with $z = (x + iy)/\ell$. Show that the state Ψ is an exact eigenstate of the many-body Hamiltonian:

$$H = \sum_i \frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2 - \Omega \vec{r_i} \times \vec{p_i} + g \sum_{i < j} \delta(\vec{r_i} - \vec{r_j}),$$

with $\ell^2 = \hbar/m\omega$. What is the corresponding eigenvalue?

The solutions to these exercises will be discussed on Friday, 15th July, and Monday, 18th July.