Mathematisches Institut der LMU Prof. P. T. Nam D.T. Nguyen Functional Analysis II Winter Semester 2017/18 17.11.2017

Excercise Sheet 5 for 24. 11. 2017

5.1. Let $f : \mathbb{R}^d \to \mathbb{C}$ be a continuous function with compact support and $f \not\equiv 0$. Prove that the multiplication operator M_f is not a compact operator on $L^2(\mathbb{R}^d)$.

5.2. Let $A: D(A) \to H$ be a self-adjoint operator. For every $n \in \mathbb{N}$, define

$$A_n = (A+i)(A+in)^{-1}.$$

Prove that A_n is bounded and $||A_n u|| \to 0$ as $n \to \infty$ for every $u \in H$. Hint: You can use the spectral theorem.

5.3. Is it true that the operator A_n in Problem 5.2 converges to 0 in the operator norm? Prove it for every self-adjoint operator A, or disprove it by an example.

5.4. Let $A : D(A) \to H$ be self-adjoint. Let $B : D(B) \to H$ be symmetric. Assume that $D(A) \subset D(B)$ and B is A-compact, namely $B(A+i)^{-1}$ is a compact operator on H. Prove the operator norm convergence

$$\lim_{n \to \infty} \|B(A + in)^{-1}\| = 0.$$

Hint: You can use Problem 5.2 and the fact that $||X|| = ||X^*||$.