Mathematisches Institut der LMU Prof. P. T. Nam D.T. Nguyen Functional Analysis II Winter Semester 2017/18 3.11.2017

Excercise Sheet 3 for 10.11.2017

Let H be a separable Hilbert space. Let $A : D(A) \to H$ be an operator which is densely defined and bounded from below, i.e. $A \ge -C$ with a constant C > 0.

3.1. Recall that the quadratic form $Q(u, v) = \langle u, Av \rangle$, first defined for all $u, v \in D(A)$, can be extended to all $u, v \in Q(A) = \overline{D(A)}^{\|\cdot\|_Q}$ where

$$||u||_Q^2 = \langle u, Au \rangle + (C+1)||u||^2.$$

Recall that the Friedrichs' extension A_0 of A is defined on

$$D(A_0) = \left\{ u \in Q(A), \sup_{v \in Q(A), \|v\| \le 1} \langle u, v \rangle_Q < \infty \right\}$$

by

$$\langle A_0 u, v \rangle = \langle u, v \rangle_Q, \quad \forall u \in D(A_0), \forall v \in Q(A).$$

Use Riesz representation theorem to explain why A_0u is well-defined for all $u \in D(A_0)$. Prove that the quadratic form domain $Q(A_0)$ of A_0 coincides with Q(A). Deduce that the Friedrichs' extension of A_0 coincides with A_0 .

3.2. Recall that the min-max value of A is defined by

 $\mu_n(A) = \inf_{M \subset D(A), \dim M = n} \max_{u \in M, \|u\|=1} \langle u, Au \rangle.$

Prove that $\mu_n(A) = \mu_n(A_0)$ for every $n \in \mathbb{N}$.

3.3. Prove that for every $N \in \mathbb{N}$,

$$\sum_{n=1}^{N} \mu_n(A) = \inf \left\{ \sum_{n=1}^{N} \langle u_n, Au_n \rangle : u_i \in D(A), \{u_1, \dots, u_N\} \text{ an orthonormal family in } H \right\}.$$

3.4. Prove that if $\mu_n(A) \to +\infty$ as $n \to \infty$, then $(A_0 + C + 1)^{-1}$ is a compact operator.