Mathematisches Institut der LMU Prof. P. T. Nam D.T. Nguyen Functional Analysis II Winter Semester 2017/18 22.12.2017

Excercise Sheet 10 for 12.1.2018

10.1. Let $A \ge B \ge 0$ be two trace class operators. Let $f : [0, \infty) \to [0, \infty)$ be a continuous, increasing function. Prove that

$$\operatorname{Tr}[f(A)] \ge \operatorname{Tr}[f(B)].$$

Here f(A) and f(B) are defined by Spectral Theorem.

10.2. Prove the Hardy-Kato inequality

$$\langle f, \sqrt{-\Delta}f \rangle \ge \frac{2}{\pi} \int_{\mathbb{R}^3} \frac{|f(x)|^2}{|x|} \,\mathrm{d}x, \quad \forall f \in H^{1/2}(\mathbb{R}^3).$$

Hint: You can mimic the proof of Hardy's inequality.

10.3. (a) Let $\{u_j\}_{j=1}^N$ be an orthonormal family in $L^2(\mathbb{R}^3)$, such that $u_j \in H^1(\mathbb{R}^3)$ for all j. Prove the fractional Lieb-Thirring inequality

$$\sum_{j=1}^{N} \langle u_j, \sqrt{-\Delta} u_j \rangle_{L^2} \ge K \int_{\mathbb{R}^3} \rho^{4/3}, \quad \text{with} \quad \rho(x) = \sum_{j=1}^{N} |u_j(x)|^2.$$

Here K is a universal constant independent of N and u_i 's.

Hint: You can mimic Rumin's proof of the Lieb-Thirring inequality.

(b) Deduce that for every $V : \mathbb{R}^3 \to \mathbb{R}, V_+ \in L^{\infty}$ and $V_- \in L^4$,

$$\operatorname{Tr}[\sqrt{-\Delta} + V]_{-} \le C \int_{\mathbb{R}^3} V_{-}^4.$$

Here C is a universal constant independent of V.

10.4. Consider the Schrödinger operator $A = -\Delta + V$ on $L^2(\mathbb{R}^2)$ with $V \in L^1 \cap L^{\infty}(\mathbb{R}^2)$. For every $\lambda > 0$, let N_{λ} be the number of eigenvalues $\langle -\lambda \rangle$ of A. Prove that for every $n \in \mathbb{N}$,

$$N_{\lambda} \leq \frac{C_n}{\lambda^{1/n}} \int_{\mathbb{R}^2} |V(x)|^{1+1/n} \,\mathrm{d}x.$$

Here the constant C_n is independent of V and λ . Hint: You can mimic the proof of the CLR bound.