Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen, S. Balkan

Mathematical Quantum Mechanics Winter Semester 2019/2024.01.2020

Tutorial Sheet 9

9.1. Let $A: D(A) \to H$ be a self-adjoint operator. Assume that A is bounded from below. Let $\{B_m\}$ be a sequence of bounded self-adjoint operators such that $\lim_{m\to\infty} ||B_m|| = 0$. Prove that

 $\lim_{m \to \infty} \mu_n(A + B_m) = \mu_n(A), \quad \forall n \ge 1.$

9.2. Let $V \in L^{3/2}(\mathbb{R}^3)$. Let $A = -\Delta + V$ be an operator on $C_c^{\infty}(\mathbb{R}^3)$.

- (i) Prove that A is bounded from below.
- (ii) Prove that $\mu_n(A) \leq 0$ and $\mu_n(A) \to 0$ as $n \to \infty$.

Hint. You can write $V = V_1 + V_2 \in L^{3/2}_{\varepsilon}(\mathbb{R}^3) + L^2(\mathbb{R}^3)$ for an arbitrary $\varepsilon > 0$ and use the fact that $\sigma_{\text{ess}}(-k\Delta + V_2) = [0, \infty)$ for any k > 0.

9.3. Let A be a self-adjoint operator on a Hilbert space \mathcal{H} . Let $U(t) = e^{-itA}$ where $t \in \mathbb{R}$.

- (i) Prove that if $\lim_{t\to 0} \frac{U(t)\psi \psi}{t}$ exists then $\psi \in D(A)$. (ii) Prove that if $D(A) = \mathcal{H}$ then $\lim_{t\to 0} ||U(t) 1|| = 0$ and U is a strongly continuous one-parameter group with infinitesimal generator A.

Remark. It is also true that $D(A) = \mathcal{H}$ if $\lim_{t \to 0} ||U(t) - 1|| = 0$.

9.4. Let χ be a measurable real-valued function on \mathbb{R} . Define the transformation operator $U(t): L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $U(t)\psi(x) = e^{-it\chi(x)}\psi(x)$ where $t \in \mathbb{R}$.

- (i) Prove that U is a strongly continuous one-parameter unitary group.
- (ii) Prove that the operator A defined by

$$A\psi(x) = \chi(x)\psi(x) \quad \text{with} \quad D(A) = \left\{\psi \in L^2(\mathbb{R}) : \int_{\mathbb{R}} |\chi(x)\psi(x)|^2 \mathrm{d}x < \infty\right\}$$

is the infinitesimal generator of U.

Hint. You can define $A_n := \left\{ x \in \mathbb{R} : |\chi(x)| \ge \frac{1}{\sqrt{|t_n|}} \right\}$ where $t_n \to 0$ as $n \to \infty$ and use a result in HW 3.1 to obtain that $\mu(A_n) \to 0$ as $n \to \infty$.