Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen, S. Balkan Mathematical Quantum Mechanics Winter Semester 2019/20 17.01.2020

Tutorial Sheet 8

8.1. Let $\{f_n\}_{n=1}^{\infty}$ be a bounded sequence in $H^s(\mathbb{R}^d)$ where s > 0 and $d \ge 1$. Assume that $f_n(x) \to f(x)$ for a.e. $x \in \mathbb{R}^d$. Prove that $f \in H^s(\mathbb{R}^d)$.

8.2. Define the operator $A: D(A) \to L^2(\mathbb{R})$ by

$$(Au)(x) = -u''(x) + |x|u(x), \quad \forall u \in D(A) = C_c^{\infty}(\mathbb{R}).$$

Prove that $A \ge c_0$ for a constant $c_0 > 0$.

Hint. You can write $u = u\mathbb{1}(|x| \leq \epsilon) + u\mathbb{1}(|x| \geq \epsilon)$ and use Sobolev's inequality $||u||_{L^{\infty}(\mathbb{R})} \leq C||u||_{H^{1}(\mathbb{R})}$, for some constant C > 0, which has been proved in the lecture.

8.3. Let $V \in L^p(\mathbb{R}^d)$ where $d \geq 3$ and $d/2 . Let <math>\{u_n\}$ be a sequence in $H^1(\mathbb{R}^d)$ such that $u_n \rightharpoonup 0$ weakly in $H^1(\mathbb{R}^d)$. Prove that

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} V(x) |u_n(x)|^2 \mathrm{d}x = 0.$$

Hint. You can write $V = V \mathbb{1}(|x| \le R) + V \mathbb{1}(|x| \ge R)$ and use Sobolev's inequality.

8.4. Let $A: D(A) \to \mathcal{H}$ be a self-adjoint operator and let $u \in \mathcal{H}$ be a normalized vector.

- (i) Determine eigenvalues of the operator $P = |u\rangle\langle u|$.
- (ii) Prove that if $A \ge 0$ then A P has at most one negative eigenvalue.