Tutorial Sheet 7

7.1. Let $A: D(A) \to \mathcal{H}$ and $B: D(B) \to \mathcal{H}$ be two self-adjoint operators and bounded from below. Prove that if $A \geq B$ then $\mu_n(A) \geq \mu_n(B)$ for all $n \geq 1$.

Remark. $A \geq B$ is defined by $D(A) \subset D(B)$ and $\langle u, Au \rangle \geq \langle u, Bu \rangle$ for all $u \in D(A)$.

- **7.2.** Let $A:D(A)\to\mathcal{H}$ and $B:D(B)\to\mathcal{H}$ be two bounded self-adjoint operators and bounded from below.
 - (i) Prove that for all $n \geq 1$ and for any constant C we have

$$\mu_n(A+C) = \mu_n(A) + C.$$

(ii) Prove that for all $n \ge 1$ we have

$$|\mu_n(A) - \mu_n(B)| \le ||A - B||.$$

7.3. Prove that for any $u \in L^1 \cap L^2(\mathbb{R}^d)$ we have

$$\lim_{|t| \to \infty} \left\| e^{it\Delta} u(x) - \frac{e^{\frac{i|x|^2}{4t}}}{(4\pi i t)^{\frac{d}{2}}} \hat{u}\left(\frac{x}{4\pi t}\right) \right\|_{L^2} = 0.$$

Remark. $e^{it\Delta}$ is the heat operator defined by $e^{it\Delta}u(x) = \int_{\mathbb{R}^d} \frac{e^{\frac{i|x-y|^2}{4t}}}{(4\pi it)^{\frac{d}{2}}}u(y)\mathrm{d}y$.

7.4. Let $\lambda > 0$. Defined the operator $U_{\lambda} : L^{2}(\mathbb{R}^{d}) \to L^{2}(\mathbb{R}^{d})$ by

$$(U_{\lambda}\psi)(x) := \lambda^{\frac{d}{2}}\psi(\lambda x).$$

- (i) Prove that U_{λ} is unitary, $U_{\lambda}^{-1} = U_{\lambda^{-1}}$ and U_{λ} leaves $H^{m}(\mathbb{R}^{d})$ invariant for any $m \in \mathbb{N}$.
- (ii) Prove that the following holds on $H^2(\mathbb{R}^d)$

$$U_{\lambda}^{-1}\Delta U_{\lambda} = \lambda^2 \Delta$$
 and $U_{\lambda}^{-1}V(x)U_{\lambda} = V(\lambda^{-1}x)$

with V being multiplication operator satisfying $VH^2(\mathbb{R}^d) \subset L^2(\mathbb{R}^d)$.