Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen, S. Balkan Mathematical Quantum Mechanics Winter Semester 2019/20 29.11.2019

Tutorial Sheet 4

4.1. Let A be a bounded operator on a Hilbert space. Find an example to show that

$$||A|| = \sup_{||u||=1} |\langle u, Au \rangle|$$

is not true if A is not symmetric.

4.2. Let (Ω, μ) be a measure space and let a be a fixed measurable function. Assume that $a \notin L^{\infty}(\Omega)$. Set $E = \bigcup_{k=1}^{\infty} E_k$ where $E_k = \{x \in \Omega : k \leq |a(x)| < k+1\}$. Define

$$f(x) = \begin{cases} k^{-1}\mu(E_k)^{-1/2} & \text{if } x \in E_k \\ 0 & \text{if } x \notin E \end{cases}$$

Prove that $f \in L^2(\Omega)$ but $af \notin L^2(\Omega)$.

Remark. This exercice together with the spectral theorem said that an operator is bounded if its domain is the whole Hilbert space.

4.3. Let $A : D(A) \to \mathcal{H}$ and $B : D(B) \to \mathcal{H}$ be symmetric operators such that $A \subset B$ and B is closed. Prove that

$$A \subset B \subset A^*.$$

Remark. $x \in D(\overline{A})$ if and only if there exist a sequence $\{x_n\} \subset D(A)$ and $y \in \mathcal{H}$ such that $x_n \to x$ and $Ax_n \to y$. In addition, we have $\overline{A}x = y$.

4.4. Let $A: D(A) \to \mathcal{H}$ be a symmetric operator. Prove that

- (i) A^{-1} is closed if A is closed and injective.
- (ii) A is closed if A is bounded
- (iii) A is closed if $\rho(A) \neq \emptyset$ where

 $\rho(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is bijective and } (A - \lambda)^{-1} \text{ is bounded}\}.$

(iv) A^* is closed if A is densely defined.

Remark. A is closed if and only if for any sequence $\{x_n\} \subset D(A)$ such that $x_n \to x$ and $Ax_n \to y$ we must have $x \in D(A)$ and y = Ax.