Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen, S. Balkan Mathematical Quantum Mechanics Winter Semester 2019/20 22.11.2019

Tutorial Sheet 3

3.1. Let $\{u_n\}_{n=1}^{\infty}$ and $\{v_n\}_{n=1}^{\infty}$ be orthonormal families in a Hilbert space. Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Consider the operator

$$A = \sum_{n=1}^{\infty} \lambda_n |v_n\rangle \langle u_n|.$$

Prove that if A is a compact operator then $\lambda_n \to 0$ as $n \to \infty$.

3.2. Let A be a linear operator in the Hilbert space. Prove that the following statements are equivalent

- i) A is a bounded operator;
- ii) $x_n \rightharpoonup x$ weakly implies $Ax_n \rightharpoonup Ax$ weakly.

3.3. Let $\{e_k\}$ be an orthonormal basis in a Hilbert space. Prove that the following statements are equivalent

- i) $\phi_n \rightharpoonup \phi$ weakly
- ii) $\{\phi_n\}$ is bounded and $\langle\phi_n, e_k\rangle \to \langle\phi, e_k\rangle$ for all k.

3.4. Let $P (P \neq 0, P \neq \text{Id})$ be a projection operator, i.e., $P = P^2 = P^*$ and P is bounded. Prove that $\sigma(P) = \{0, 1\}$.