Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen, S. Balkan Mathematical Quantum Mechanics Winter Semester 2019/20 08.11.2019

Tutorial Sheet 1

1.1. Assume that $f_n \to f$ and $g_n \to g$ almost everywhere. Prove that $f_n + g_n \to f + g$ almost everywhere.

1.2. Let A be a (unbounded) densely defined operator in a Hilbert space.

- (i) Prove that A^* is unique.
- (ii) Prove that A is symmetric if and only if $A \subset A^*$.

1.3. Let A and B be (unbounded) densely defined operators in a Hilbert space.

- (i) Prove that if $A \subset B$ then $B^* \subset A^*$.
- (ii) Deduce that if A is self-adjoint then it has no extension except itself.

1.4. Consider the operator $A = i \frac{d}{dt}$ with

 $D(A) = \{ f \in L^2(0,1) : f' \text{ is continuous and } f(0) = f(1) = 0 \}.$

Prove that A is a symmetric operator and $A \subsetneq A^*$.

1.5. Let (Ω, Σ, μ) be a measurable space. Let $A_n \in \Sigma$, n = 1, 2, ... such that $A_1 \subset A_2 \subset ... \subset A_n \subset ...$ and let $A = \bigcup_{n=1}^{\infty} A_n$. Prove that

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$