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Problem 1. (2 point) Let A be a bounded operator on a separable Hilbert space H .
Prove that the following statements are equivalent:

A is a compact operator ⇐⇒ A∗A is a compact operator.

Problem 2. (2 point) Let A be a self-adjoint operator on a separable Hilbert space H
such that (A+ i)−1 is a compact operator.

(a) Prove that σess(A) = ∅.

(b) Prove that if A is also a bounded operator, then dimH <∞.

Problem 3. (2 point) Let t > 0. Consider the heat kernel

Kt(x) = |4πt|−d/2e−|x|
2/(4t), x ∈ Rd.

(a) Prove that Kt ∗ f ∈ Hm(Rd) for all m ∈ N and for all f ∈ L2(Rd).

(b) Prove that ‖Kt ∗ f − f‖L2(Rd) ≤
√
t‖f‖H1(Rd) for all f ∈ H1(Rd).

Problem 4. (2 points) Consider the operator A on L2(0, 1) defined by

(Af)(x) = (1 + x2)f(x)−
∫ 1

0

f(y)dy, ∀f ∈ L2(0, 1).

Prove that A is a bounded self-adjoint operator and σess(A) = [1, 2].

Problem 5. (2 points) Consider the operator A on L2(R) defined by

(Af)(x) = (1 + x2)f(x), D(A) =

{
f ∈ L2(R) : (1 + x2)f ∈ L2(R),

∫
R
f = 0

}
.

We know that A is a (densely defined) closed operator (Homework 7.2).

a) What is the quadratic form domain of A? Justify your answer.

b) Let AF be the Friedrichs extension of A. Prove that σ(AF ) = [1,∞).


