Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi S. Balkan, D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2019/20 06.01.2020

Homework Sheet 9

(Due on 13.01.2020 by 14:15 in the box "Mathematical Quantum Mechanics", no 45)

9.1. Prove that $C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$ is dense in $H^1(\mathbb{R}^d)$ if $d \ge 3$, but not dense if d = 1.

9.2. Let $1 \le p \le q < r \le \infty$. Prove that for any function $f \in L^q(\mathbb{R}^d)$ and any $\varepsilon > 0$ we can write

 $f = f_1 + f_2$ with $f_2 \in L^r(\mathbb{R}^d)$, $f_1 \in L^p(\mathbb{R}^d)$ and $||f_1||_{L^p} \le \varepsilon$.

9.3. Let μ be a positive measure on \mathbb{R}^3 with $0 < \mu(\mathbb{R}^3) < \infty$. Define

$$V(x) = (\mu * |\cdot|^{-1})(x) = \int \frac{d\mu(y)}{|x-y|}.$$

Consider the operator $A = -\Delta - V$ on $L^2(\mathbb{R}^3)$ with $D(A) = H^2(\mathbb{R}^3)$.

- (i) Prove that A is self-adjoint and $\sigma_{\text{ess}}(A) = [0, \infty)$.
- (ii) Prove that A has infinitely many negative eigenvalue.

9.4. Consider the operator $A: D(A) \to L^2(\mathbb{R}^3)$ defined by

$$A = -\Delta + \frac{1}{|x|}$$
 with $D(A) = H^2(\mathbb{R}^3)$.

- (i) Prove that $\sigma(A) = [0, \infty)$.
- (ii) Prove that A has no eigenvalues.

9.5. Consider the operator $A = -\Delta + V$ on $L^2(\mathbb{R})$ with $0 \ge V \in C_c^{\infty}(\mathbb{R}), V \not\equiv 0$. Prove that A has at least one negative eigenvalue.