Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi S. Balkan, D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2019/20 9.12.2019

Homework Sheet 8

(Due on 16.12.2019 by 14:15 in the box "Mathematical Quantum Mechanics", no 45)

8.1. Let A be a self-adjoint compact operator on a Hilbert space \mathcal{H} with dim $\mathcal{H} = \infty$. Prove that

$$\sigma_{\rm ess}(A) = \{0\}.$$

8.2. Let K be a compact operator on a Hilbert space \mathcal{H} . Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of bounded self-adjoint operators on \mathcal{H} such that

$$\lim_{n \to \infty} \|A_n u\| = 0, \quad \forall u \in \mathcal{H}.$$

Prove that $||KA_n|| \to 0$.

8.3. Let $A: D(A) \to \mathcal{H}$ be a self-adjoint operator on a Hilbert space \mathcal{H} . Prove that

$$\sigma_{\rm dis}(A^2) \subset (\sigma_{\rm dis}(A))^2$$
 and $\sigma_{\rm ess}(A^2) = (\sigma_{\rm ess}(A))^2$.

Here by definition, $X^2 := \{\lambda^2 | \lambda \in X\}.$

8.4. Let $A : D(A) \to \mathcal{H}$ be a self-adjoint operator on a Hilbert space $(\mathcal{H}, \|.\|)$. Let $\lambda \in \sigma(A)$ and let $\{x_n\}_{n=1}^{\infty}$ be a Weyl sequence for (A, λ) , namely

$$x_n \in D(A), \quad ||x_n|| = 1, \quad ||(A - \lambda)x_n|| \to 0.$$

Assume further that $x_n \rightharpoonup x$ weakly in \mathcal{H} with ||x|| < 1. Prove that $\lambda \in \sigma_{ess}(A)$.

8.5. Let $A : D(A) \to \mathcal{H}$ be a self-adjoint operator on a Hilbert space \mathcal{H} such that $A \ge 1$. Let Q_A be the quadratic form associated to A with the quadratic form domain Q(A). Assume that there exists $u_0 \in Q(A)$, $||u_0|| = 1$ such that

$$||u_0||_{Q_A} = \inf_{u \in Q(A), ||u|| = 1} ||u||_{Q_A}.$$

Prove that $u_0 \in D(A)$ and it is an eigenfunction of A.