Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi S. Balkan, D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2019/20 25.11.2019

Homework Sheet 6

(Due on 02.12.2019 by 14:15 in the box "Mathematical Quantum Mechanics", no 45)

In this homework we focus on some applications of Spectral Theorem. Here $i^2 = -1$.

6.1. Let A be a bounded self-adjoint operator on a Hilbert space. Prove that

$$||A|| = \sup_{\|u\|=1} |\langle u, Au \rangle| \quad \text{and} \quad ||A^n|| = ||A||^n, \, \forall n \in \mathbb{N}.$$

6.2. Let $A : D(A) \to \mathcal{H}$ be a (unbounded) self-adjoint operator on a separable Hilbert space \mathcal{H} .

- i) Prove that $U = e^{iA}$ is a unitary operator on \mathcal{H} .
- ii) Prove that $U = (A i)(A + i)^{-1}$ is a unitary operator on \mathcal{H} .

6.3. Let $A: D(A) \to \mathcal{H}$ be a self-adjoint operator on a separable Hilbert space. For any $n \in \mathbb{N}$ consider

$$A_n = n(A+in)^{-1} + i, \quad n \in \mathbb{N}.$$

- i) Prove that $||A_n u|| \to 0$ as $n \to \infty$ for any $u \in \mathcal{H}$.
- ii) Prove that $||A_n|| \to 0$ as $n \to \infty$ if and only if A is bounded.

6.4. Let $\{A_n\}_{n=1}^{\infty}$ and A be self-adjoint operators on a separable Hilbert space \mathcal{H} with the same domain $D(A_n) = D(A)$ such that

$$\lim_{n \to \infty} \|A_n \varphi - A \varphi\| = 0, \quad \forall \varphi \in D(A).$$

Prove that

$$\lim_{n \to \infty} \|(A_n + i)^{-1}u - (A + i)^{-1}u\| = 0, \quad \forall u \in \mathcal{H}.$$

6.5. Let (Ω, μ) be a measure space. Let M_f be the multiplication operator on $L^2(\Omega)$ of a measurable function $f: \Omega \to \mathbb{C}$ with the natural domain

$$D(M_f) = \{g \in L^2(\Omega) : fg \in L^2(\Omega)\}.$$

Prove that $\lambda \in \mathbb{C}$ is an eigenvalue of M_f if and only if the set $E = \{x \in \Omega : f(x) = \lambda\}$ has positive measure.