Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi S. Balkan, D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2019/20 18.11.2019

Homework Sheet 5

(Due on 25.11.2019 by 14:15 in the box "Mathematical Quantum Mechanics", no 45)

5.1. Let A be a bounded linear operator on a Hilbert space. Prove that the following statements are equivalent

- i) A is a compact operator;
- ii) $x_n \rightharpoonup x$ weakly implies $Ax_n \rightarrow Ax$ strongly.

5.2. Let $\{u_n\}_{n=1}^{\infty}, \{v_n\}_{n=1}^{\infty}$ be orthonormal families in a Hilbert space. Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Consider the operator

$$A = \sum_{n=1}^{\infty} \lambda_n |v_n\rangle \langle u_n|.$$

- i) Prove that if $\{\lambda_n\}$ is bounded, then A is bounded and $||A|| = \sup_{n>1} |\lambda_n|$.
- ii) Prove that if $\lambda_n \to 0$ as $n \to \infty$, then A is a compact operator.

5.3. Let A be a bounded operator on a Hilbert space \mathcal{H} . Let V be a closed subspace of \mathcal{H} such that $A: V \to V$. Prove that $A^*: V^{\perp} \to V^{\perp}$.

5.4. Let A be a bounded operator on a Hilbert space \mathcal{H} such that

$$||Au|| \ge ||u||$$
 and $||A^*u|| \ge ||u||, \quad \forall u \in \mathcal{H}.$

Prove that A^{-1} is a bounded operator.

5.5. Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} .

i) Assume that there exists a vector $u_0 \in \mathcal{H}$ such that $||u_0|| \leq 1$ and

$$\langle u_0, Au_0 \rangle = \inf_{\|u\| \le 1} \langle u, Au \rangle =: E.$$

Prove that $Au_0 = Eu_0$.

ii) Deduce that if $\langle u, Au \rangle = 0$ for all $u \in \mathcal{H}$, then $A \equiv 0$. Hint: for (i) you can use $\langle u_0, Au_0 \rangle \leq \langle u_{\varepsilon}, Au_{\varepsilon} \rangle$ with $u_{\varepsilon} = (u_0 + \varepsilon \varphi) / ||u_0 + \varepsilon \varphi||$ for $|\varepsilon|$ small.

5.6. Let (Ω, μ) be a measure space. Let M_a be the multiplication operator on $L^2(\Omega)$ associated with a function $a \in L^{\infty}(\Omega)$. Prove that the spectrum $\sigma(M_a)$ is equal to the essential range of a.