Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi S. Balkan, D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2019/20 13.01.2020

Homework Sheet 10

(Due on 20.01.2020 by 14:15 in the box "Mathematical Quantum Mechanics", no 45)

10.1. Let $V \in C_c^{\infty}(\mathbb{R}^d)$ with $d \geq 3$ such that $V \geq 0$ and $V \neq 0$. For any $\lambda > 0$, consider the Schrödinger operator $A_{\lambda} = -\Delta - \lambda V(x)$ on $L^2(\mathbb{R}^d)$ (which is a self-adjoint operator with $D(A) = H^2(\mathbb{R}^d)$). Denote by N_{λ} the number of negative eigenvalues of A_{λ} .

- (i) Prove that $N_{\lambda} \to 0$ as $\lambda \to 0$.
- (ii) Prove that $N_{\lambda} \to \infty$ as $\lambda \to \infty$.

10.2. For any $\lambda > 0$, consider the Schrödinger operator

$$A_{\lambda} = -\Delta - \mathbb{1}(|x| \le 1) + \lambda$$

on $L^2(\mathbb{R}^2)$ (which is a self-adjoint operator with $D(A) = H^2(\mathbb{R}^2)$). Let N_{λ} be the number of negative eigenvalues of A_{λ} . Prove that for any $\varepsilon > 0$, there exists a constant C_{ε} depending only on ε such that

$$N_{\lambda} \leq C_{\varepsilon} \lambda^{-\varepsilon}, \quad \forall \lambda > 0.$$

Hint. You can mimic the proof of CLR bound.

10.3. Let $A : D(A) \to \mathcal{H}$ be a self-adjoint operator on a separable Hilbert space \mathcal{H} . Assume that A is bounded from below. Prove that the following statements are equivalent.

- (i) A has compact resolvent, namely $(A z)^{-1}$ is a compact operator for all $z \in \rho(A)$ (the resolvent set of A).
- (ii) The min-max values $\{\mu_n\}_{n=1}^{\infty}$ of A satisfy $\lim_{n \to \infty} \mu_n = +\infty$.
- (iii) A has eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$ with eigenvectors $\{x_n\}_{n=1}^{\infty}$, i.e. $Ax_n = \lambda_n x_n$, such that $\lim_{n \to \infty} \lambda_n = +\infty$ and $\{x_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathcal{H} .

10.4. Let $V : \mathbb{R}^d \to \mathbb{R}$ such that $V \in L^{\infty}_{\text{loc}}(\mathbb{R}^d)$ and $\lim_{|x|\to\infty} V(x) = +\infty$. Recall that by Friedrichs' method, we can define

$$A = -\Delta + V(x)$$

as a self-adjoint operator on $L^2(\mathbb{R}^d)$ with domain $D(A) \supset C_c^{\infty}(\mathbb{R}^d)$. Prove that A has compact resolvent.