Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2018/19 10.12.2018

Homework Sheet 9 for 17.12.2018

- **9.1.** Let $A: D(A) \to H$ be a self-adjoint operator and $A \ge 0$.
 - (i) Prove that there exist a self-adjoint operator $\sqrt{A} \ge 0$ such that $(\sqrt{A})^2 = A$. Show that $D(\sqrt{A}) = Q(A)$, where Q(A) is the quadratic form domain of A.
 - (ii) Prove the formula

$$\sqrt{A} = \frac{1}{\pi} \int_0^\infty \frac{A}{(t+A)\sqrt{t}} \mathrm{d}t.$$

9.2. Let $A: D(A) \to H$ be a self-adjoint operator and $A \ge 0$. Assume that the variational problem

$$E = \inf\{\|\sqrt{A}u\|^2 : u \in D(\sqrt{A}), \|u\| = 1\}$$

has a minimizer $u_0 \in D(\sqrt{A})$. Show that $u_0 \in D(A)$ and $Au_0 = Eu_0$.

- **9.3.** Let 3/2 < s < 2 and let $A = -\Delta |x|^{-s}$ on $L^2(\mathbb{R}^3)$ with $D(A) = C_c^{\infty}(\mathbb{R}^3 \setminus \{0\})$.
 - (i) Prove that A is bounded from below and the quadratic form domain of A is $Q(A) = H^1(\mathbb{R}^3)$.
 - (ii) Let A_F be the Friedrichs extension of A. Show that $D(A_F) \neq H^2(\mathbb{R}^3)$.
- **9.4.** Let $A: D(A) \to H$ be a self-adjoint operator. Let $u_0 \in D(A)$ and define

$$u(t) = e^{-itA}u_0, \quad \forall t \in \mathbb{R}.$$

- (i) Prove that $u(t) \in D(A)$ for all $t \in \mathbb{R}$.
- (ii) Prove that

$$\frac{\mathrm{d}}{\mathrm{d}t}u(t) := \lim_{s \to t} \frac{u(s) - u(t)}{s - t} = -iAu(t)$$

Here the limit holds strongly in H.

Hint: You can use Spectral theorem and Dominated convergence.