Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen

Homework Sheet 7 for 3.12.2018

7.1. Let A be a bounded self-adjoint operator on a Hilbert space H. Let $u \in H$ and let μ_u be the spectral measure associated with A. Prove that

$$\mu_u(\sigma(A)) = \|u\|^2.$$

7.2. Let $A : D(A) \to H$ be a (densely defined) unbounded operator on a Hilbert space H. Prove that the following statements are equivalent:

- (i) A is symmetric, i.e. $\langle u, Av \rangle = \langle Au, v \rangle$ for all $u, v \in D(A)$.
- (ii) $\langle u, Au \rangle \in \mathbb{R}$ for all $u \in D(A)$.
- (iii) A^* is an extension of A.

7.3. Let (Ω, μ) be a measure space. Let $f : \Omega \to \mathbb{C}$ be a measurable function. Prove that the subspace

$$D(M_f) = \{ u \in L^2(\Omega, \mu) : fu \in L^2(\Omega, \mu) \}$$

is dense in $L^2(\Omega, \mu)$.

7.4. Let $A : D(A) \to H$ be a self-adjoint operator. Let $1_{(a,b)}$ be the characteristic of the interval $(a,b) \subset \mathbb{R}$, and define the spectral projection $1_{(a,b)}(A)$ by the spectral theorem. Prove that

$$\sigma(A) = \{ \lambda \in \mathbb{R} : 1_{(\lambda - \varepsilon, \lambda + \varepsilon)}(A) \neq 0 \quad \text{ for all } \varepsilon > 0 \}.$$

7.5. Let $A: D(A) \to H$ be a self-adjoint operator. Use the Spectral Theorem (multiplication operator version) to prove the Dominated Convergence in functional calculus: if $\{f_n\} \subset B(\sigma(A)), f_n(t) \to f(t)$ pointwise and $\sup_n ||f_n||_{L^{\infty}} < \infty$, then

$$||f_n(A)u - f(A)u|| \to 0, \,\forall u \in H.$$

7.6. For bounded operators on a Hilbert space H, recall the following convergence notions:

- Norm-convergence: $B_n \xrightarrow{n} B$ iff $||B_n B|| \to 0$.
- Strong convergence: $B_n \xrightarrow{s} B$ iff $||B_n u Bu|| \to 0$ for all $u \in H$.
- Weak convergence: $B_n \stackrel{w}{\rightharpoonup} B$ iff $\langle u, (B_n B)v \rangle \to 0$ for all $u, v \in H$.

Find examples for the following cases:

- (i) $B_n \xrightarrow{s} B$ strongly, but B_n does not converge to B in operator norm.
- (ii) $B_n \stackrel{w}{\rightharpoonup} B$ weakly, but B_n does not converge to B strongly.