Homework Sheet 6 for 26.11.2018

- **6.1.** Let $\{x_n\}$ be an orthonormal family in a Hilbert space. Prove that $x_n \to 0$ weakly.
- **6.2.** Let A be a bounded operator on a Hilbert space H. Prove that

$$Ker(A^*) = Ran(A)^{\perp}$$
.

Here Ran(A) := $\{Ax : x \in H\}$ and Ker(A*) := $\{x : A*x = 0\}$.

6.3. Let A be a bounded operator on a Hilbert space H such that there exists b > 0:

$$||Ax|| \ge b||x||, \quad ||A^*x|| \ge b||x||, \quad \forall x \in H.$$

Show that the inverse A^{-1} exists as a bounded operator and $||A^{-1}|| \leq b^{-1}$.

Hint: You can prove $\operatorname{Ran}(A) = H$ by showing that $\operatorname{Ran}(A)$ is closed and $\operatorname{Ran}(A)^{\perp} = \{0\}$.

6.4. Let U be a unitary operator on a Hilbert space H, i.e. $UU^* = U^*U = 1$. Prove that

$$\sigma(U) \subset {\lambda \in \mathbb{C}, |\lambda| = 1}.$$

Hint: Problem 6.3 could be helpful.

6.5. Let A be a bounded self-adjoint operator on a Hilbert space H. Prove that

$$||A|| = \sup_{||x||=1} |\langle x, Ax \rangle|.$$

Hint: You can use $||A|| = \sup_{||x|| = ||y|| = 1} \operatorname{Re}\langle x, Ay \rangle$ (why?) and polarization identity.

6.6. Consider the operator A on $H = L^2(0,1)$ defined by

$$(Af)(x) = xf(x), \quad \forall f \in H.$$

Prove that A is a bounded self-adjoint operator and $\sigma(A) = [0, 1]$, but A has no eigenvalue.