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Homework Sheet 4 for 12.11.2018

In this exercise we consider the energy functional of the hydrogen atom
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E(u) = |Vu(z)|* dz —/ de, u € H'R?), ||lul|z: = 1.
R3 R3

|z]

4.1. In the lecture we discussed a proof of the stability £(u) > —C' using Sobolev’s
inequality ||Vu|[zz > S||ul|zs and the decomposition

2|7t < R+ [2| 7' 1(|2] < R).
Work out the details to find an explicit lower bound. You can use the sharp constant
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Note: The lower bound obtained in this way is not very good. It will be improved below.

4.2. Show that for all functions g > 0 satisfying [, ¢**(z) dz = S®, we have

&= [ Jul@)P(gle) - fol ) do
R3
Use this with g(x) = [|z|~" — R™'], for an appropriate R to deduce that

E(u) > -3

Note: This bound is remarkably better than £(u) > —1 obtained by Hardy’s inequality.

4.3. Show that

Ju(z)[?
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= dx) . Vue H'(RY), ullz = 1.
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|Vu(x)|? dr > 3 (
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Hint: You can use the scaling argument.

4.4. Use the above inequality to prove that for any s > 0,

1/s
( |Vu(z)? dx) (/ \a:]%]u(:z:)|2dx> > 2, Vu € HY(R?), ||ul|p2 = 1.
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Note: When s = 1 it is Heisenberg’s uncertainty principle (with a worse constant).



