Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2018/19 4. 2. 2018

Homework Sheet 15 for 8.2.2019

15.1. Let A be a mixed state on a Hilbert space H (i.e. a positive trace class operator with TrA = 1). Prove that for any nonnegative convex function $f : \mathbb{R} \to \mathbb{R}$ and for any orthonormal basis $\{u_n\}_n$ for H we have

$$\operatorname{Tr}[f(A)] \ge \sum_{n} f(\langle u_n, Au_n \rangle).$$

Hint: You can use the spectral decomposition of A.

15.2. Let ρ_1 be a mixed state on a Hilbert space H_1 . Prove that for every Hilbert space H_2 with dim $H_2 \ge \dim H_1$ (both can be $+\infty$), there exists a pure state $\rho = |\Psi\rangle\langle\Psi|$ with $\Psi \in H_1 \otimes H_2$ such that

 $\rho_1 = \operatorname{Tr}_{H_2} \rho \quad \text{(partial trace over the space } H_2\text{)}$

i.e. $\operatorname{Tr}[\rho_1 A] = \operatorname{Tr}(\rho A \otimes 1_{H_2})$ for all compact operators A on H_1 .

15.3. Let A and B be two self-adjoint operators on a Hilbert space H such that

$$A \ge B > 0.$$

- i) Prove that $B^{-1} \ge A^{-1}$.
- ii) Prove that $\sqrt{A} \ge \sqrt{B}$. Hint: HW 9.1 may be helpful.

15.4. Let A and B be two positive self-adjoint operators on a Hilbert space H. Prove that

$$\frac{1}{A} + \frac{1}{B} \ge \frac{4}{A+B}.$$