Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen

Homework Sheet 13 for 28.1.2019

- **13.1.** Let $\{u_n\}$ be an orthonormal basis of a Hilbert space H. Prove that
 - i) If K is a trace class operator on H, then $\sum_{n=1}^{\infty} |\langle u_n, Ku_n \rangle|$ is finite and $\sum_{n=1}^{\infty} \langle u_n, Ku_n \rangle$ is independent of the choice of $\{u_n\}$.
 - ii) If K is a Hilbert–Schmidt operator on H, then $\sum_{n=1}^{\infty} ||Ku_n||^2$ is finite and independent of the choice of $\{u_n\}$.

13.2. Let $0 \leq V \in L^{3/2}(\mathbb{R}^3)$. Consider the operator $K = \sqrt{V}(-\Delta)^{-1}\sqrt{V}$ (with \sqrt{V} being the multiplication operator). Show that K is a Hilbert-Schmidt operator and

$$||K||_{\rm HS} \le C ||V||_{L^{3/2}}$$

for a universal constant C > 0 independent of V.

Hint: You can compute the integral kernel of K (the kernel of $(-\Delta)^{-1}$ is $(4\pi |x - y|)^{-1}$).

13.3. We prove the Lieb–Thirring inequality for the sum of negative eigenvalues of $-\Delta + V$ by adapting the proof of the CLR inequality.

i) Let $\{u_n\}_{n=1}^N$ be an orthonormal family in $L^2(\mathbb{R}^3)$ with $u_n \in H^2(\mathbb{R}^3)$ and denote $\rho(x) = \sum_{n=1}^N |u_n(x)|^2$. Prove that there exists a universal constant K > 0 such that $\sum_{n=1}^N \int_{\mathbb{R}^3} \int_$

$$\sum_{n=1}^{N} \int_{\mathbb{R}^{3}} |\nabla u_{n}(x)|^{2} \, \mathrm{d}x \ge K \int_{\mathbb{R}^{3}} \rho(x)^{5/3} \, \mathrm{d}x.$$

- ii) Deduce that if $V \in L^{5/2}(\mathbb{R}^3, \mathbb{R})$, then the sum of negative eigenvalues of $-\Delta + V$ is bounded from below by $-C \int_{\mathbb{R}^3} |V|^{5/2}$ with a universal constant C > 0 (independent of V). Here recall that $-\Delta + V$ is a self adjoint operator on $L^2(\mathbb{R}^3)$ with domain $H^2(\mathbb{R}^3)$.
- **13.4.** Let $V \in L^p(\mathbb{R}^3)$ with $2 \le p < 3$. Show that for all $u \in C_c^{\infty}(\mathbb{R}^3)$, $\int_1^{\infty} \|Ve^{it\Delta}u\|_{L^2(\mathbb{R}^3)} dt < \infty.$

Note: This bound implies the existence of wave operator for $-\Delta + V$.

13.5. Let A and B be self-adjoint operators on a Hilbert space H such that the wave operator $O_{A} = \lim_{i \to a} \frac{itA - itB}{itA}$

$$\Omega := \lim_{t \to \infty} e^{itA} e^{-itE}$$

exists, i.e. the strong limit $e^{itA}e^{-itB}u \to \Omega u$ holds for all $u \in H$. Prove that

- i) $A\Omega = \Omega B$ (i.e. $A\Omega u = \Omega B u$ for all $u \in D(B)$).
- ii) If A has no eigenvalue, then B also has no eigenvalue.