Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen

Homework Sheet 12 for 21.1.2019

12.1. Let $A : D(A) \to H$ be a self-adjoint operator which is bounded from below. Let $\{B_m\}$ be a sequence of bounded self-adjoint operator such that $||B_m|| \to 0$ as $m \to \infty$. Prove the convergence of the min-max values

 $\lim_{m \to \infty} \mu_n(A + B_m) = \mu_n(A), \quad \forall n \ge 1.$

12.2. Let $A: D(A) \to H$ be a self-adjoint operator which is bounded from below. Assume that its min-max values satisfy $\mu_n(A) \to \infty$ as $n \to \infty$. By the min-max principle, we know that $\{\mu_n\}_{n=1}^{\infty}$ are eigenvalues and we can choose an orthonormal *family* of eigenfunctions $\{u_n\}_{n=1}^{\infty}$. Prove that $\{u_n\}_{n=1}^{\infty}$ is an orthonormal *basis* for H.

12.3. Let $A : D(A) \to H$ be a self-adjoint operator and let $u \in H$ be a normalized vector. Prove that if $A \ge 0$, then the operator

$$A - |u\rangle\langle u|$$

has at most one negative eigenvalue.

12.4. Let $V \in L^{3/2}(\mathbb{R}^3)$. We know that the operator $A = -\Delta + V(x)$ is bounded from below (e.g. on the core domain $C_c^{\infty}(\mathbb{R}^3)$) and hence it can be extended to be a self-adjoint operator on $L^2(\mathbb{R}^3)$ by Friedrichs' method. Show that its min-max values satisfy $\mu_n \leq 0$ and $\mu_n \to 0$ as $n \to \infty$.

Hint: Note that here we are not assuming $V \in L^2 + L^p$ with $2 \leq p < \infty$, so we cannot deduce that $\sigma_{\text{ess}}(A) = [0, \infty)$ from Weyl's theory in the lecture.

12.5. Let $V \in C_c^{\infty}(\mathbb{R}^3)$ such that $V \leq 0$ and $V \not\equiv 0$. For any $\lambda > 0$, denote by N_{λ} the number of negative eigenvalues of $-\Delta + \lambda V$ (which is a self-adjoint operator on $L^2(\mathbb{R}^3)$) with domain $H^2(\mathbb{R}^3)$). Prove that $N_{\lambda} \to 0$ as $\lambda \to 0$ and $N_{\lambda} \to \infty$ as $\lambda \to \infty$.

12.6. Let a > 0 and R > 0. Let $u \in L^2(\mathbb{R}^d)$ satisfy that

$$a^2 \int_{\mathbb{R}^d} \varphi(x)^2 |u(x)|^2 \, \mathrm{d}x \le \int_{\mathbb{R}^d} |\nabla \varphi(x)|^2 |u(x)|^2 \, \mathrm{d}x$$

for all functions $\varphi : \mathbb{R}^d \to \mathbb{R}$ such that $\varphi, \nabla \varphi \in L^{\infty}$ and $\operatorname{supp} \varphi \subset \{ |x| \ge R \}$. Prove that

$$\int_{\mathbb{R}^d} e^{2b|x|} |u(x)|^2 \, \mathrm{d}x < \infty, \quad \forall b < a$$

Hint: Think of the choice $\varphi = e^f - 1$. This result was used in the lecture to prove the decay of bound states of Schrödinger operator.