Mathematisches Institut der LMU Prof. P. T. Nam, Prof. A. Scrinzi D.T. Nguyen Mathematical Quantum Mechanics Winter Semester 2018/19 7.1.2018

Homework Sheet 11 for 14.1.2019

11.1. Let A be a self-adjoint compact operator on an infinitely dimensional Hilbert space. Prove that $\sigma_{\text{ess}}(A) = \{0\}$.

11.2. Let $V: \mathbb{R}^3 \to \mathbb{R}$ satisfy that $V \in L^2(\mathbb{R}^3) + L^p(\mathbb{R}^3)$ with $2 \leq p < \infty$ and

$$V(x) \le -\frac{1}{|x|^s}$$

for a constant 0 < s < 2. Recall by Kato-Rellich theorem we know that $A = -\Delta + V$ is a self-adjoint operator on $L^2(\mathbb{R}^3)$ with domain $D(A) = H^2(\mathbb{R}^3)$. Prove that A has infinitely many negative eigenvalues.

11.3. Let $A : D(A) \to H$ be a self-adjoint operator and let u_0 be a normalized eigenfunction of A, i.e. $||u_0|| = 1$ and $Au_0 = \lambda u_0$ for some $\lambda \in \mathbb{R}$. Prove that the Schrödinger equation

$$iu'(t) = Au(t)$$
 for all $t \in \mathbb{R}$, $u(0) = u_0$

has a unique solution

$$u(t) = e^{-it\lambda}u_0, \quad \forall t \in \mathbb{R}.$$

11.4. Let A be a self-adjoint operator on $L^2(\mathbb{R}^d)$ and consider the Schrödinger equation

$$i\partial_t u(t,x) = Au(t,x)$$
 for all $t \in \mathbb{R}$, $u(0,x) = u_0(x)$

where u_0 belongs to the span of eigenfunctions of A, i.e. $u_0 = \sum_{n=1}^{N} v_n$ with $\{v_n\}$ an orthogonal family of eigenfunction of A. Prove that for any $\varepsilon > 0$, there exists $R = R_{\varepsilon}$ such that

$$\int_{|x|\ge R} |u(t,x)|^2 \, \mathrm{d}x \le \varepsilon, \quad \forall t \in \mathbb{R}.$$

This means that $u(t, \cdot)$ is localized in space for all time.