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Literature

The arguments in this lecture are taken from
Asher Peres, Quantum Theory: Concepts and Methods

This book, in my opinion, is a very nice example of “non-mathematical
physics” containing intellectually accurate and honest discussions of the
conceptional foundations of quantum mechanics.

1 Unitary groups and self-adjoint operators

Stone theorem provides a one-to-one correspondence between unitary groups
and self-adjoint operators. Unitarity conserves norms (=probabilities) and
scalar products (=transition amplitudes) and can therefore be interpreted
in terms of experimental procedures: from the point of view of physics, it
is the more fundamental concept. The prominent role of self-adjointness
for observables is due to their correspondence to unitary groups.

Definition: Strongly continuous one-parameter unitary group
is a family of unitary operators U(t), t ∈ R with the property

U(t1 + t2) = U(t1)U(t2) (1)

where
tn → t⇒ U(tn)

s→ U(t), (2)

in the sense of strong convergence.

Theorem 1. Let A be self-adjoint and set U(t) = exp(−itA). Then

1. U(t) is a strongly continuous one-parameter unitary group.

2. The limit limt→0
1
t [U(t)ψ − ψ] exists if and only if ψ ∈ D(A) and it

holds

lim
t→0

1

t
[U(t)ψ − ψ] = −iAψ (3)

3. The domain is invariant under U(t) : U(t)D(A) = D(A).
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As unitary groups appear as the more fundamental objects, the inverse
of the above is of utmost interest:

Theorem 2. (Stone) Let U(t) be a (strongly) continuous one-parameter
unitary group. Then it has the form U(t) = exp(−itA) for some self-
adjoint A.

We can here also use weak continuity for U(t): as the U(t) are unitary,
weak continuity implies strong continuity. (Proof can be found in the
literature, we have not discussed some of the rather basic tools to do that
proof.)

2 Symmetries and unitary groups

Our conventional representation of symmetries such as translation by some
vector aê

(Uaψ)(~r) = ψ(~r − aê) (4)

or rotation by angle α around some axis ê

(Uαψ)(~r) = ψ(R−1αê (~r)) (5)

are trivially unitary and also strongly continuous. R~α is the matrix for
rotations in R3. The group’s generators are the self-adjoint operators for
momentum and angular momentum.

2.1 Unitary representation of symmetries

The concept of “symmetry” is not a priori tied to unitary transforma-
tions. Our original concept of symmetry is that we can transform a system
ψ → ψ′ = T [ψ] and any measurement apparatus such that the outcome of
transformed measurement on the transformed system does not change. As
measurements are projections we can express them as vectors in the Hilbert
space and the probability for finding some result a is 〈ψ|a〉〈a|ψ〉 = |〈a|ψ〉|2
for any pair of vectors. This motivates to define a symmetry transforma-
tion as any transformation that leaves the modulus of all scalar products
invariant. Note that no linearity assumption is made here.

Interestingly, as was realized in the 1930’ies by Eugene Wigner, for QM
in Hilbert space, the only maps that qualify for symmetry transformation
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are either — except for a multiplication by a phase — unitary or anti-
unitary, the latter meaning a map U with

〈Ux|Uy〉 = 〈y|x〉 (6)

Theorem 3. Wigner Let T : u → u′ = T [u] be a map of the Hilbert
space onto itself with the property |〈u′|v′〉| = |〈u|v〉| then T has the form
T [u] = φ[u]V u, where V is either unitary or anti-unitary and |φ[u]| = 1 is
an arbitrary u-dependent phase factor.

Note that φ[u] can be any silly function, including,

φ[u] = 1 for ||u|| < 1, eiα else. (7)

The idea of the proof is by direct examination of how a given basis is
mapped. This works for finite Hilbert spaces as is, needs some caution
when going to separable infinite Hilbert spaces (R. Simon et al. / Physics
LettersA 378 (2014) 2332). For non-separable spaces different proofs are
available (see, e.g., Gy.P. Geher / Physics LettersA 378 (2014) 2054). It
appears that Wigner himself did not bother to give a rigorous proof of this,
which was supplied only 32 years later by Bargman (according to Geher).
So we can be at ease with citing the appealingly simple finite-dimensional
version. (pages 218 and 219 of Peres)
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3 Time-evolution

We “know” that time-evolution forms a unitary, strongly continuous group
U(t) and therefore there exists (conserved) energy as a self-adjoint opera-
tor. Norm-conservation is a requirement by construction, group-property
implies the possibility to continue time-evolution from any point (or revert
it), continuity is a commonplace requirement in physics: we do not want
sudden changes. The missing linearity, however, is not an a priori idea
about time-evolution. We might subject the map of time-evolution to the
same conditions as spatial translation and then, from the time-invariance
of physics, conclude that it must be a unitary map. However, this is not
legitimate: ordinary symmetries like translation merely mean to change
coordinates in one way or another. In contrast time-evolution may be con-
necting otherwise unrelated Hilbert spaces. Time is not an operator and
does not appear as one of the coordinates in our Hilbert space on which we
might re-label our system and apparatus. If we mean by time-invariance
that experiments started at any time show the same evolution of ampli-
tudes, a simple time-invariant, non-linear evolution will be given next.

Less arbitrary non-linear Hamiltonians have been proposed, but could
be falsified in experiments: [C. G. Shull, D. K. Atwood, J. Arthur, and
M. A. Horne, Phys. Rev. Lett. 44, 765 (1980)] and [J. J. Bollinger, D. J.
Heinzen, Wayne M. Itano, S. L. Gilbert, and D. J. Wineland Phys. Rev.
Lett. 63, 1031, 1989] (the prominent names on these papers show that the
concerns are taken seriously).

It is then interesting to see that there is a very general argument against
non-linear time-evolutions: accepting all other premises of QM, only uni-
tary time-evolution is compatible with non-increasing entropy: norm-conserving,
but non-unitary evolutions invariably include states with increasing en-
tropy.

3.1 A norm-conserving non-linear time-evolution

We have no axiom that the time-evolution must be linear or unitary. In-
deed, we can construct non-linear norm-conserving maps from the Hilbert
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space onto itself. For example, the time-evolution

i
d

dt

(
α
β

)
= (α2 − β2)

(
0 −i
i 0

)(
α
β

)
(8)

is manifestly non-linear, but it conserves the norm. Note that this operator
is also perfectly time-invariant, i.e. an evolution starting from a given state
at any time will proceed in the same way.

On can easily construct solutions for (Peres):

α/β = tanh(t− t0) for |α| < |β|
α/β = coth(t− t0) for |α| > |β|

In the long run, all solutions collapse to equal amplitudes for both compo-
nents. That is a funny property, as it turns any vector asymptotically into
the vector (

α(t)
β(t)

)
→ 1√

2

(
1
1

)
. (9)

This means that, in the remote future, all information will collapse into
a single vector. Loosely associating lack of knowledge with entropy, this
cause trouble for the time-evolution by a growth of entropy. Slightly more
precisely, any mixed state will end up pure as

ρ(t)→ 1

2

(
1 1

)(1
1

)
. (10)

This problem is general for non-linear time-evolutions.

3.2 Entropy

We had introduced general “states” on a C∗ algebra of observables as the
normalized positive functionals ω : ω(B∗B) ≥ 0. In any Hilbert space
representation states appear as density matrices: is a positive linear op-
erator ρ with Trρ = 1. (Note that this does not represent all states, but
only a subset of “normal” states definition to be added). As ρ positive,
we have have a spectral representation. As it has finite trace, it is a for-
tiori compact and therefore has a purely discrete spectrum with a spectral
representation as

ρ =
∑
i

|i〉ρi〈i| (11)
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The physical interpretation is that we have incomplete knowledge about
many copies of the same system and that ρi is the relative frequency for
finding a system picked from the ensemble in the state |i〉. It is important
to remember the difference to a superposition state

|s〉 =
∑
i

√
ρi|i〉 : (12)

this describes a single system that is fully determined and whose density
matrix is ρs = |s〉〈s|. A more detailed discussion will be given later.

Entropy is a measure about the fuzziness of our knowledge about the
system, i.e. the distribution of the ρi between the extremes (0 entropy) =
(0 fuzziness) = (perfect knowledge) = ρi = δii0 = pure state and (maximal
entropy) = (maximal fuzziness) = (no nontrivial knowledge) = ρi = ρj∀i, j

By general desired properties as well as motivated through a probability
interpretation one arrives a the von Neumann - entropy

S(ρ) = −Trρ log ρ = −
∑
i

ρi log ρi (13)

For our discussion of the time-evolution it is only important to observe that
if the density matrix were to evolve from less pure to more pure, entropy
decreases, i.e. any convex function of the density matrix would do.

3.3 Only unitary time-evolution respects the second law of thermodynamics

The time-evolution of ρ is given through the time-evolution of the |i〉, i.e.

ρ(t) =
∑
i

|i, t〉ρi〈i, t| =
∑
i

U |i, 0〉ρi〈i, 0|U † = UρU †. (14)

The first form is more general, but the second two forms assume unitary
time-evolution.

In general, unitary transforms are the ones that leave eigenvalues of a
matrix and therefor the entropy invariant. Non-unitary mappings will in
general change the eigenvalues (even if the trace is conserved). We restrict
the reasoning here to the finite-dimensional case. As discussed, we cannot
not a priori require conservation of |〈u(t)|v(t)〉|2. Instead we will need
some extra input, which will be to require non-decreasing entropy. After
that one can apply Wigner’s theorem.
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Let us assume there is any time-evolution u(0)→ u(t) and v(0)→ v(t)
and let us assume we have a density matrix with maximal entropy

ρ =
1

2
Pu +

1

2
Pv, (15)

whose time-evolution is, of course, just given by the time-evolution u(t)
and v(t). At any time the eigenvalues of this rank 2 matrix can be
easily evaluated. Remember, though, that we do not assume orthogo-
nality of |〈u(t)|v(t)〉| = 0, but we do assume conservation of probability
〈u(t)|u(t)〉 = 〈v(t)|v(t)〉 = 1. Write your solution as a linear combination
of |ψ〉 = |u〉cu + |v〉cv to obtain(

1
2

1
2〈u|v〉

1
2〈v|u〉

1
2

)
~c = w±~c. (16)

with the eigenvalues

w± =
1

2
(1± |〈v|u〉|). (17)

Any increase of |〈v|u〉|2 leads to an unphysical decrease of entropy. To see
this, one can simply calculate the derivative of the entropy. It is a direct
consequence of the convexity of −x log x. However, it is a good exercise
to look at the qualitative behavior: for identical states u = v, we have a
pure state, w+ = 1, w− = 0 and the entropy is zero. As we decrease the
overlap between the states, the difference w+ − w− = 2|〈v|u〉| decreases
monotonically towards a more and more mixed state with a limiting value
at orthogonal states 〈u|v〉 = 0, with corresponding increase of entropy.
(With a little practice in reading 2 × 2 matrices, we do not even need
to calculate the eigenvalues: one “knows” that the off-diagonal matrix
elements contribute to an further separation of the two eigenvalues of the
matrix.) I.e. the orthogonal situation produces the maximal entropy. If the
second law holds, orthogonal states |〈v(0)|u(0)〉|2 can never become non-
orthogonal during a time-evolution. Orthogonal states remain orthogonal.

That means that we can choose a time-dependent orthonormal basis uk(t)
such that for any arbitrary state v we have∑

k

〈v(t)|uk(t)〉〈uk(t)|v(t)〉 = 1 ∀t. (18)
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Suppose there is some state for which the “cos2” |〈v(t)|um(t)〉|2 decreases
(rather than remaining constant), then there must be at least one term
|〈v(t)|un(t)〉|2 that increases. But then we could construct a mixed state
from v and un whose entropy spontaneously and unphysically decreases.

It follows that the time-evolution must leave moduli of all scalar prod-
ucts invariant, it fulfills the condition for a (continuous) symmetry and by
Wigner’s theorem we know it can be considered unitary.
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