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Literature

The arguments in this lecture are taken from
Asher Peres, Quantum Theory: Concepts and Methods

This book, in my opinion, is a very nice example of “non-mathematical
physics” containing intellectually accurate and honest discussions of the
conceptional foundations of quantum mechanics.

1 Unitary groups and self-adjoint operators

Stone theorem provides a one-to-one correspondence between unitary groups
and self-adjoint operators. Unitarity conserves norms (=probabilities) and
scalar products (=transition amplitudes) and can therefore be interpreted
in terms of experimental procedures: from the point of view of physics, it
is the more fundamental concept. The prominent role of self-adjointness
for observables is due to their correspondence to unitary groups.

Definition: Strongly continuous one-paratmeter unitary group
is a family of unitray operatores U(t), t ∈ R with the property

U(t1 + t2) = U(t1)U(t2) (1)

where
tn → t⇒ U(tn)

s→ U(t), (2)

in the sense of strong convergence.

Theorem 1. Let A be self-adjoint and set U(t) = exp(−itA). Then

1. U(t) is a strongly continuous one-parameter unitary group.

2. The limit limt→0
1
t [U(t)ψ − ψ] exists if and only if ψ ∈ D(A) and it

hols

lim
t→0

1

t
[U(t)ψ − ψ] = −iAψ (3)

3. The domain is invariant under U(t) : U(t)D(A) = D(A).
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As unitary groups appear as the more fundamental objects, the inverse
of the above is of utmost interest:

Theorem 2. (Stone) Let U(t) be a (strongly) continuous one-parameter
unitary group. Then it has the form U(t) = exp(−itA) for some self-
adjoint A.

We can here also use weak continuity for U(t): as the U(t) are unitary,
weak continuity implies strong continuity. (Proof can be found in the
literature, we have not discussed some of the rather basic tools to do that
proof.)

2 Symmetries and unitary groups

Our conventional representation of symmetries such as translation by some
vector aê

(Uaψ)(~r) = ψ(~r − aê) (4)

or rotation by angle α around some axis ê

(Uαψ)(~r) = ψ(R−1αê (~r)) (5)

are trivially unitary and also strongly continuous. R~α is the matrix for
rotations in R3. The group’s generators are the self-ajoint operators for
momentum and angular momentum.

2.1 Unitary representation of symmetries

The concept of “symmetry” is not a priori tied to unitary transforma-
tions. Or original concept of symmetry is that we can transform a sys-
tem ψ → ψ′ = T [ψ] and any measurment aparatus such that the out-
come of transformed measurment on the transformed system does not
change. As measurements are projectioins we can expressen them as vec-
tors in the Hilbert space and the probability for finding some result a is
〈ψ|a〉〈a|ψ〉 = |〈a|ψ〉|2 for any pair of vectors. This motivates to define a
symmetry transformation as any transformation that leaves the modulus
of all scalar products invariant. Note that no linearity asumption is made
here.
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Interestingly, as was realized in the 1930’ies by Eugene Wigner, for QM
in Hilbert space, the only maps that qualify for symmetry transforation
are either unitary or anti-unitary, the latter meaning a linear map with

〈Ux|Uy〉 = 〈y|x〉 (6)

except for a multiplication by a phase.

Theorem 3. Wigner Let T : u → u′ = T [u] be a map of the Hilbert
space onto itself with the propety |〈u′|v′〉| = |〈u|v〉| then T has the form
T [u] = φ[u]V u, where V is either unitary or anti-unitary and |φ[u]| = 1 is
an arbitrary φ-dependent phase factor.

Note is φ[u] can be any silly function, including,

φ[u] = 1 for ||u|| < 1, eiα else. (7)

The idea of the proof is by direct examination of how a given basis is
mapped. This works for finite Hilbert spaces as is, needs some caution
when going to separable infinite Hilbert spaces (R. Simon et al. / Physics
LettersA 378 (2014) 2332). For non-separabel spaces different proofs are
available (see, e.g., Gy.P. Geher / Physics LettersA 378 (2014) 2054). It
appears that Wigner himself did not bother to give a rigorous proof of this,
which was supplied only 32 years later by Bargman (according to Geher).
So we can be at ease with citing the appealingly simple finite-dimensional
version.

(pages 218 and 219 of Peres)
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3 Time-evolution

We “know” that time-evolution forms a unitary, strongly continuous group
U(t) and therefore there exists (conserved) energy as a self-adjoint opera-
tor. Norm-conservation is a requirement by construction, group-property
implies the possibility to continue time-evolution from any point (or revert
it), continuity is a commonplace requirement in physics: we do not want
sudden changes. The missing linearity, however, is not an a priori idea
about time-evolution. We might subject the map of time-evolution to the
same conditions as spatial translation and then, from the time-invariance
of physics, conclude that it must be a unitary map. However, this is not
legitimate: ordinary symmetries like translation merely mean to change
coordinates in one way or another. In constrast time-evolution may be
connecting otherwise unrelated Hilbert spaces. Time is not an operator
and does not appear as one of the coordinates in our Hilbert space on
which we might re-label out system and aparatus. If we mean by time-
invariance that experiments started at any time show the same evolution
of amplitudes, a simple time-invariant, non-linear evolution will be given
next.

It is then interesting to see that, accepting all other premises of QM, only
unitary time-evolution is compatible with non-increasing entropy: norm-
conserving, but non-unitary evolutions invariably include systems with in-
creasing entropy.

3.1 A norm-conserving non-linear time-evolution

We have no axiom that the time-evolution must be linear or unitary. In-
deed, we can construct non-linear norm-conserving maps from the Hilbert
space onto itself. For example, the time-evolution

i
d

dt

(
α
β

)
= (α2 − β2)

(
0 −i
i 0

)(
α
β

)
(8)

is manifestly non-linear, but it conserves the norm. Note that this operator
is also perfectly time-invariant, i.e. evolutions at all times will procede in
the same way.

5



On can easily construct solutions for (Peres):

α/β = tanh(t− t0) for |α| < |β|
α/β = coth(t− t0) for |α| > |β|

In the long run, all solutions collaps to equal amplitudes for both compo-
nents. That is a funny property, as it turns any vector asymptotically into
the vector (

α(t)
β(t)

)
→ 1√

2

(
1
1

)
. (9)

This means that, in the remote future, all information will collaps into
a single vector. Loosly associating lack of knowledge with entropy, this
cause trouble for the time-evolution by a growth of entropy. Slightly more
precisely, any mixed state will end up pure as

ρ(t)→ 1

2

(
1 1

)(1
1

)
. (10)

This problem is general for non-linear time-evolutions.

3.2 Entropy

We had introduced general “states” on a C∗ algebra of observables as the
normalized postive functionals ω : ω(B∗B) ≥ 0. In any Hilbert space rep-
resentation states appear as density matrices: is a positive linear operator
ρ with Trρ = 1. (Note that this does not represent all states, but only
a subset of “normal” states definition to be added). As ρ positive,
we have have a spectral representation. As it has finite trace, it is a for-
tiori compact and therefore has a purely discrete spectrum with a spectral
representation as

ρ =
∑
i

|i〉ρi〈i| (11)

The physical interpretation is that we have incomplete knowledge about
many copies of the same system and that ρi is the relative frequency for
finding a system picked from the ensemble in the state |i〉. It is important
to remember the difference to a superpostion state

|s〉 =
∑
i

√
ρi|i〉 : (12)

6



this describes a single system that is fully determined and whose density
matrix is ρs = |s〉〈s|. A more detailed discussion will be given later.

Entropy is a measure about the fuzzyness of our knowledge about the
systen, i.e. the distribution of the ρi between the extremes (0 entropy) =
(0 fuzziness) = (perfect knowledge) = ρi = δii0 = pure state and (maximal
entropy) = (maximal fuzziness) = (no nontrivial knowledge) = ρi = ρj∀i, j

By general desired properties as well as motivated through a probability
interpretation one arrives a the von Neumann - entropy

S(ρ) = −Trρ log ρ = −
∑
i

ρi log ρi (13)

For our discussion of the time-evolution it is only important to observe that
if the density matrix were to evolve from less pure to more pure, entropy
decreases, i.e. any convex function of the density matrix would do.

3.3 Only unitary time-evolution respects the second law of thermomdynam-
ics

The time-evolution of ρ is given through the time-evolution of the |i〉, i.e.

ρ(t) =
∑
i

|i, t〉ρi〈i, t| =
∑
i

U |i, 0〉ρi〈i, 0|U † = UρU †. (14)

The first form is more general, but the second two forms assume unitary
time-evolution.

In general, unitary transforms are the ones that leave eigenvalues of a
matrix and therefor the entropy invariant. Non-unitary mappings will in
general change the eigenvalues (even if the trace is conserved). We restrict
the reasoning here to the finite-dimensional case. As discussed, we cannot
not a priori require conservation of |〈u(t)|v(t)〉|2. Instead we will need
some extra input, which will be to require non-decreasing entropy. After
that one can apply Wigner’s theorem.

Let us assume there is any time-evolution u(0)→ u(t) and v(0)→ v(t)
and let us assume we have a density matrix with maximal entropy

ρ =
1

2
Pu +

1

2
Pv, (15)

whose time-evolution is, of course, just given by the time-evolution u(t)
and v(t). At any time the eigenvalues of this rank 2 matrix can be
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easily evaluated. Remember, though, that we do not assume orthogo-
nality of |〈u(t)|v(t)〉| = 0, but we do assume conservation of probability
〈u(t)|u(t)〉 = 〈v(t)|v(t)〉 = 1. Write your solution as a linear combination
of |ψ〉 = |u〉cu + |v〉cv to obtain(

1
2

1
2〈u|v〉

1
2〈v|u〉

1
2

)
~c = w±~c. (16)

with the eigenvalues

w± =
1

2
(1± |〈v|u〉|). (17)

The entropy obtained with these eigenvalues strictly decreases with increas-
ing |〈v|u〉|2. To see this, one can simply calculate the derivative. It is a
direct consquence of the convexity of −x log x. It is a good exercise to look
at the qualitative behavior: for identical states u = v, we have a pure state,
w+ = 1, w− = 0 and the entropy is zero. As we decrease the overlap be-
tween the states, the difference w+−w− = 2|〈v|u〉| decreases monotonically
towards a more and more mixed state with a limiting value at orthogonal
states 〈u|v〉 = 0, with corresponding increase of entropy. (With a little
practice in reading 2 × 2 matrices, we do not even need to calculate the
eigenvalues: one “knows” that the off-diagonal matrix elements contribute
to an further separation of the two eigenvalues of the matrix.) I.e. the or-
thogonal situation produces the maximal entropy. If the second law holds,
orthogonal states |〈v(0)|u(0)〉|2 can never become non-orthogonal during a
time-evolution. Orthogonal states remain orthogonal.

That means that we can choose a time-dependent orthonormal basis
uk(t) such that for any arbitrary state v we have∑

k

〈v(t)|uk(t)〉〈uk(t)|v(t)〉 = 1 ∀t. (18)

Suppose there is some state for which the “cos2” |〈v(t)|um(t)〉|2 decreases
(rather than remaining constant), then there must be at least one term
|〈v(t)|un(t)〉|2 that increases. But then we could construct a mixed state
from v and um whose entropy spontaneously increases.

It follows that the time-evolution must leave moduli of all scalar prod-
ucts invariant, it fulfills the condition for a (continuous) symmetry and by
Wigner’s theorem we know it can be considered unitary.
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