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Chapter 1

Review of Analysis

1.1 Measure Theory

In measure theory the basic object is a measure space (£2,%, 1) consisting of a (measure)

space (), a Sigma-algebra >, and a measure p.

( Definition 1.1 (Sigma-Algebra). A Sigma-algebra ¥ is a collection of subsets of €2 such )
that

1) 0,Q €,

2) if A€ X then A :=Q\AeX,

3) if (A,);2, C ¥ then | J2, A, € X.

L If A€ X, Ais called measurable. O )

4 Y
Definition 1.2 (Measure). A measure p is a function X — [0, co] such that

1) u(A) >0 forall AeX,

2) if (A,)>7, C 3, such that 4, N A, =0 if n # m, then

A(SENES 2
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é Y
Example 1.3. The most common example of a measure space is {2 = R% ¥ being the

Lebesgue measurable sets, and p being the Lebesgue measure.

The properties characterising this measure space are:
1) X contains all open and closed sets,

2) For all A € ¥ and € > 0, there exists an open set B such that A C B and
u(B\ A) < ¢ (Outer Regularity).

For all A € ¥, there exists a sequence of closed/compact sets (B,,), such that
B, C A, and

K (A \ U Bn) =0,
n=1
ie. A=J7, B, almost everywhere (a.e.) (Inner Regularity).

3) Completeness: If A € ¥ and pu(A) = 0, then for all B € A, B € ¥ and
n(B) = 0.

4) Forallz € R* and all A € &, A+ 2 € ¥ and pu(A + x) = u(A) (Translation

Invariance).
For all A € R, and all A € ¥, AA € ¥ and u(AA) = |M\4u(A) (Dilation).

- 5) Normalisation: The unit cube has measure 1, i.e. x([0,1]%) = 1. )

4 N
Definition 1.4 (Measurable Functions). Given a measure space (€2, 3, 1), a function

f:Q —[0,00] is called measurable iff

fH(too) ={ze|f(z) >t} e
for all ¢ > 0. These sets are called level sets.

Or equivalently
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e f(x)=1lim, . fn(z), where f, is a step function, i.e.

I
fn(x) = Z)\iXAi
i=1
where \; € R, A; € ¥ and

1, if x € Az
XAi(x) = )
0, otherwise

or

o (if 2 =R9) f(z) = lim,_o fn(x), where f, is a really simple function, i.e. f,(x) =
Zi]:l Aix4; where \; > 0 and A; are cubes.

In general a function f : € — C can be split into f = f; — fo + if3 — if, with
. fi : 2 —[0,00]. Then f is measurable iff all f; are. O

.

Remark 1.5 (Reminder of Riemann Integral). The Riemann integral can only be de-

fined for functions that are continuous up to a countable set. O

4 Y
Definition 1.6 (Integration). For any measurable function f : Q@ — [0, 00] we define

its Lebesgue integral to be

o0

[ 1@ = [u(ie e 3] 1) >

where the right-hand-side is interpreted as a Riemann integral. This is well-defined as
t— ,u({x ex ‘ f(x) > t}) is monotone decreasing, and thus it is continuous up to a
countable set (Exercise 1.1).

For a measurable function f : 2 — C we define

[ @@= [n- i fs-i |5

which makes sense iff [ f; < oo for all i € {1,...,4}. In this case we call f integrable.
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LEquivalently, [ is integrable iff | f| is measurable and [ |f| < co. DJ

1.2 Fundamental Theorems on Integration

N\
Theorem 1.7 (Monotone Convergence). If (f,,),—, is a sequence of measurable, real,

and integrable functions, fn(x) T f(z) (i.e. f(x) = for1(z) = fu(z) for alln € N) for
a.e. x (i.e. up to a set of measure 0), then

[ f@du@) = 1 [ f@duta)

L (which holds even when both sides are +00). O )

\
Theorem 1.8 (Dominated Convergence). If (fn)n | @5 a sequence of measurable and
) —

integrable functions (f, : @ — C), fu(z) ==
integrable function G, such that |f,(z)| < G(x) for a.e. x. Then

[ f@an@) = 1 [ fe)dutz)

L (and both sides are finite). O

f(z) for a.e. z, and there exists an

Remark 1.9. Under the same conditions as in the [Theorem 1.8 we also have
150 - f@duta) =0,
Q

This is stronger than the previous convergence theorem as

/ F ()t / fu@du@)| = | [ () = fu@)n(o)| < [ |#@) = £ @)]duo)

Q Q
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Remark 1.10 (“Inverse” of Dominated Convergence). If (f,) -, is a sequence of inte-

grable functions, f integrable, and

/|fn—f<dum>o
Q

then there exists a subsequence (f, ), of (f), such that

fy () Lt f(z), for a.e. x
| fr, ()] < G(2), for a.e. x
for an integrable function G. U
[ N

Theorem 1.11 (Fatou’s Lemma). If (f,), is a sequence of integrable functions, f, > 0,
ful(z) =225 f(z) for a.e. x. Then

n—oo

imint [ £,(0)du(o) > [ f@)dn(o)

Remark 1.12 (Notation).

lim a, =ag: <= Ve >03IN. e NVn> N.: |a, —ag| <¢

n—oo
liminf a,, := lim inf a,,
n—oo n—oo m=n

limsupa, := lim sup a,,
n—00 n—00 m>n

liminfa, > ay < Ve >03dN. € NVn>N.: a, —ag = —¢

n—o0

WV

limsupa, <agy <= Ve >0dN. e NVn>N.: a, —ag < ¢

n—oQ
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é N
Theorem 1.13 (Brezis-Lieb Refinement of Fatou’s Lemma). Assume that (f,), is a

sequence of integrable functions, f, — f for a.e. x, f integrable. Then

S =191~ 15 = fllan =0

Consequently,
Jiz= f171= f1r- 1=
Landiffn—>f a.e. and [|fu| = [|f| then [|fn — f] = 0. DJ

Proof. |fal = |fn — f] =2 |f| a.e. and

with |f| being integrable. The assertion then follows from the dominated convergence
orem 1.8| q.e.d.
é Y

Theorem 1.14 (Approximation by Continuous Functions). If f : R¢ — C is an in-
tegrable function, then there exists a sequence of continuous functions with compact
support (i.e. fu|,.c =0 for some compact set K) (f,), C 6.(R?) such that

/ Fo— fldz " 0.
R‘i

1.3 LP Spaces

4 Y
Definition 1.15 (L? Space). Let (2, %, 1) be a measure space. For all 1 < p < oo we

define

LP(Q) := {f : Q— C| f is measurable, || f||z» < 0o}
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where y
(1Pae) " itp<
I fllze := 4 \@
esssup,cq |f(2)],  if p=oo.
Here

esssup | f(z)| == inf{\ € R||f(z)| < A for a.e. z}.

€S
Convergence with respect to the topology generated by ||-||z» is called norm convergence

or StI‘OHg convergermnce.

O

G

13

.

Remark 1.16 (Fundamental Results for L?). All fundamental results for L' extend to
LP for all 1 < p < oc.

1) (Monotone Convergence for LP) If (f,), C LP(2) is a sequence of a.e. increasing

functions, converging a.e. to f then

J1nlr == [l

2) (Dominated Convergence) If (f,), C LP(f2) is a sequence functions converging
a.e. to f and for all n € N |f,,| < G € LP(Q), then

/Ifn|” == /Ifl” and /|fn_f|10 LNy
Sketch of Proof. |f, — f|P 2= 0 a.e. and
o — fIP < (Ifal +1f])7 < 2°GP € L'

Then the assertion follows from the standard dominated convergence|[l'heorem 1.8
O

3) (Fatou) If (f,), C LP(Q2) is a sequence of non-negative functions, converging a.e.

to f, then
/|f\p < liminf/|fn|p
n—oo
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4) If (f), C LP(Q) is a sequence functions converging a.e. to f and for all n € N
[ 1falP < C, then

/an\p 1P = 1 ] 250

O

é N

Definition 1.17 (Dual Space). For any Banach Space X its dual space is

X" = {£ X —C ‘ L is linear and Continuous}.
This is a Banach space with norm
L]l x+ == sup |L(f)]
[l £llx <1

A U V.

Remark 1.18 (Properties of LP(§2)). 1) LP(Q2) is a Banach space with norm || - ||z»
forall 1 < p < o0, ie.

o || fllr =0forall feLP(Q)and |||l =0 < f=0 (ae. ),
o |Afllee = [A||| f]|ze for all A € C,

o |[f+gllee < ||flle +lgllzr (triangle inequality),

and it is complete, i.e. if (f,), C LP(2) is a Cauchy sequence, i.e.
limy, oo || fo — finllzr = 0, then there exists a f € LP(2) such that

n—o0

||f - fn“Lp —0.

2) (Holder’s Inequality) If p,q € [1,00] and i + % = 1 (such p,q are called dual

powers) then
gl < A Nzrllgllze

for all f € L” and g € L9. More generally if pil + pig + .- p—ln =1, then

11 fa - Fallor < Al fallzoz - - ([ fall Lon
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3) (Dual of LP)
(L))" = 17(2)

where © + ¢ =1 for all 1 <p < co. Note that (L=(Q))* 2 L'(Q).

This means that for all £ € (LP(€Q))* there exists a unique g € L(Q2) such that

for all f e LP(Q)

:/fg,

Moreover,

1£[zry = sup

IfllLp<1

Sketch of Proof of (2) & (3). By Young’s inequality for all a,b >

00
ab? b
ab < —+ —.
p q

A stronger version of this inequality asserts that

ab = inf{ (ca)? | (&b }

e>0 p q

In particular, we have

/ fg‘ Il

15

0,14+ =1withl<p<

I p 6_1 q
ol < L
q
pointwise. Thus,
||f||Lp) L gl
f9l <
q
for all e > 0. The infimum of the rlght—hand—31de is equal to || f||z#||g]|Le. This yields Holder’s
inequality.
Consequently,
sup | [ 1o| < ol
Il fllzp<1

On the other hand, for all g € L7, g # 0 we can define

_ glgl?

([ lgln) "
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/fgz(/ﬁm)%zumm.

é Y
Definition 1.19 (Weak Convergence). Let 1 < p < co. Then a sequence (f,,), C LP(9)

then ||f|l» =1 and

g.e.d.

is said to converge weakly in L

==

iff for all g € LU(Q), with &+ 2 = 1,

/fng"ﬁ—oﬁ/fg'
0

A y

4 N
Theorem 1.20 (Banach-Alaoglu). Let 1 < p < oo. If (f,), is a bounded sequence in

LP (i.e. ||fullzr < C for all n € N), then there exists a subsequence (f,,), such that

k—o0 .
i . . U
L f k f in Y

Theorem 1.21 (Banach-Steinhaus, Uniform Boundedness Principle). If f, == f in

LP, then (f,), ts bounded in LP. O

Remark 1.22. Strong convergence (i.e. convergence in norm) implies weak conver-

gence. 0]

é )
Example 1.23. Let f,p € 6.(RY). Define

fal) = f(2) + @z + z0)

where |z,| — oco. Then for |z,| large enough

Jialr = [1av+ [1or 1= £l = el £0




1.3. LY SPACES 17
Thus f,, / f strongly in LP. But f, — f weakly. Indeed, for all g € L9(2)
[ o= [ 19= [ o+ sg@uta) =0

by the dominated convergence and approximating ¢ by a function g. € LZ
with [lg — g-[l, <e.

Proof of [Theorem 1.20. For all g € L4, (f fng)n is a bounded sequence in C as

‘/fng

This means that there exists a subsequence (f,,), such that [ f,, g converges for k — oc.

< I fnllzellgllze < CllgllLa-

Now take a sequence (g, ),._; in L?(£2). Then we can choose a subsequence (f,, ), such that
[ frngm converges as k — oo for all m € N, which can be done by a “Cantor Diagonal
Argument”.

Taking the subsequence ( fnk1> constructed for g;, we may extract a subsequence of this
k1

sequence < fnkz) converging also for go. Doing this for all m € N we obtain the double
ko

sequence ( e ) (kam)en2* Then for the sequence (f lek) , the integrals [ fnkk gm converge
m/ (k, keN

as k — oo for all m € N, since ( fn’“k)k>m is a subsequence of the convergent sequence
( fnkm) ks hence it is itself convergent.

Using the fact that L(Q) is separable, i.e. that there exists a sequence (g,) -, C L()
that is dense in L?(£2). (Separability follows from the approximation of L? functions by step
functions or continuous functions with compact support. L>(€2) is not separable, hence the
assertion fails in that case.)

With this choice of (g,,),, we can define a linear functional £ : L(Q2) — C via

f0 = i f o

By the above this is well-defined, and as (gy,),, is dense this functional can be uniquely
extended to all of L9(Q) if it is bounded on (g,,),,. This is the case as

< lim ’ Fae I Ngmllze < Cllgm| Ls-
k—o0 kllLe

£00)] = Jim| [

Thus £ € (L9(2))* and there exists a unique f € LP(Q) such that £(g) = [ fg for all g € L.
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By this, we have for all g,,

Lim /fnk gn = L(gm) = /fgm'

For an arbitrary g € L9(£2) choose a subsequence (g, ), converging to g strongly. Then

‘/fnkkg—/f‘ < ‘/fnkk(g—gml) +’/fnkkgml—/fgml +‘/f(gml—9)’ <

fnkk Lp”g_gmlHLq"’ ‘/fnkkgml _/fgml + fnkk

< CHg - gmlHLq + ‘/fnkkgml - /fgml

— 2C|g — gm, || La

Mg = gl <

k—o0

+Cllg = gmlle —

The right-hand side can now be made arbitrarily small (by choosing [ large enough), hence
k—o0

’f Jr, 9 — ffg‘ —— 0. Thus, indeed

k—o0

q.e.d.

é Y
Definition 1.24. Let Q = R? f, g measurable and define their convolution for each

x € RY, if it exists, to be
(F 29 /f r—y

Remark 1.25. fxg=gx fand (fxg)xh=fx*(g*h). O

é N
Theorem 1.26 (Young’s Inequality). Let 1 < p,q,r < oo. If f € LP,g € L9, then
f*g e L" with

1 1 1
o ===,
r p g
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| and 7 % gl < I 7lsllglse =)

Remark 1.27. The Young inequality is equivalent to

/ / F(@)g(z — y)h(y)dady| < [ flrllglzallBl o

de
where
1 1 1
—+—+—,=2
p q T
and%—i-%:l. O

Theorem 1.28 (Approximation by Convolution). Let 1 < p < oo and f € LP(RY). Let

ge L'RY), [g=1 and fore >0, g. = g(£) %, ie. [g-=1.
Then g. * f =20, f strongly in LP(R?) OJ

Corollary 1.29. For all LP(R?), 1 < p < oo there exists a sequence (fy), € €>°(R?),
|| fo = fllz» — 0. O

Proof. By approximation, we may assume that f € %,(R%) which we shall prove later.

For simplicity, we assume that g has compact support. Then

(g: % f)(@) — f(z)| = / 6:(0) (= — y)dy — / 6:(y) (@) =

R R4

- / 0:(0) (f(z — ) — f(2))dy| <

]Rd
< sw |fl@—2) - f(2) / 0. (9)ldy <
ZESUpp ge
Rd
< s If(e =) = S@llgls =50

where suppg C Bg(0). Because f has compact support it is uniformly continuous, hence

the last limit can be taken uniformly for all € R%.
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e—0

Thus, ||ge * f — fllco — 0. Since f, g have compact support it follows that g. * f has one as

supp(g- * f) C supp ge + supp f C Ber(0) + supp f C Br(0) + supp(f).

for e < 1. Thus, ||[g- * f — f|lzr = 0 for all 1 < r < oo as

11l < (u(supp D) # Il o e < (alsupp £))7 [ f]l

which follows from Holder’s inequality.
To remove the assumption that f and g have compact support we use sequences (f,,),., (gn), C
%. such that

n—oo

o= flle =0, Nlgn— gllr =0

and utilise Young’s inequality || f * g|[z» < ||f]lze]lgllz: to estimate

f*gs_f:(fn*gs_fn)+(f_fn)*gs+(fn_f)a

where the third vanishes by assumption and the second term vanishes by both Young’s
inequality and our assumption as n — oo, and the first term goes to 0 by the above as
e — 0.

Concerning g we have the similar estimate

f*ge_f:(f*ge,n_f>+f*<g€_gs,n)

the second term vanishes by Young’s inequality and our assumption as n — oo and the first
term vanishes as ¢ — 0 per our assumption.

For the corollary, we can choose g € €, [g = 1 and if f € €.(R?), then g. x [ €
€ (RY). qg.e.d.

4 N
Theorem 1.30 (Hardy - Littlewood - Sobolev Inequality).

//%dﬁy < C[lfllzellgllze
d]Rd

for % + % + % =2, for all0 < X\ < d, and C = C(p,q, \,d) independent of f,g. O
G
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Remark 1.31. The HLS inequality does not come from Young’s inequalty as for

M) =
/|h \—/]h _ Wdz

This inequality is also called the “weak Young inequality” as it involves a weak norm
of h. ]

>’\I~L

Proof. We shall use the “Layer-cake” representation

o0

[1@re =p [ @t

0

where
— (@1 > @} = [ Lgseppads
Rd
and .
/|9(I)IPZQ/h2(b)bq‘ldb7 ha(b) 2/1{|g(y>|>b}dy-
R4 0 Rd
Without loss of generality we may assume that || f||z» = ||g||ze = 1 (otherwise rescale the

functions). For the left-hand-side, we use

o0

()] = / 1oy da

= / L{jg(y)|>bydb
0

1 r dc

0 0

where the substitution ¢ — ¢=* was used for the last equality. Using this, the left-hand-side

takes the form

L{i1@)1>a} Llg(w) 58} L{Ja—yl<c}
[ [ et / / /Q [ g | e
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We shall denote the function within the parentheses as I(a, b, ¢). Note that we may arbitrarily

exchange by Tonelli’s theorem all the integrals in this expression as the integrand is positive.

Now we use a trick: By ignoring one of the three characteristic function we can estimate

I(a,b,c) < // L{is@)>ap ig( (I e hi(a)hs(b)

C)\+1 C/\+1
Rd R4
L @)>a) L {e—yl<c} Liyl<e} ¢!
I(a,b,c) L// {7 CMly dedy = h(a) [ =5 dy = h(a)| Bl 575
R4 R4 Rd

I(a’ b,C) ( )|Bl| AL
where |Bj| is the volume of the unit ball. Thus,

nlnl{hl(a)hg(b),h¢<a)cd,he(b)cd}7

I(a,b,c) < C

where C' is some constant.

dedy| < A I(a,b, c)dadbde
Ix—-yP
00 0

Recalling that

We have
/](a,b,c)dc: / I(a,b,c)dec + / I(a,b,c)d
0 hi(a)>c? hi(a)<c?
hg(b)c hl (a)hg(b)
< [ res [ 2R
hi(a)>c? hi(a)<cd
1
d—A—1 _
= hy(b) / c de + hyi(a)ha(b) / ch =
0<e<hy(a)d ha(a)d <c
d—X
ha(b) (P (a)* ) |
— + )\hl (a)h2<b> Chl( ) hl (b)
d— A\ 1
A(hlgod)
Similarly we have

/I(a, b,c)de < Chl(a)hQ(b)d%

0
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Thus

/ I(a,b, ¢)de < cmin{hl(a)l—%@(b), hl(a)hg(b)l—%}.

We want to estimate the a- and b-integrals in terms of

1= / f@)Pde = p / hn(a)a? da
0

1 —/Ig I"dy—q/hz( )b? " db
0

Using these identities we get

///1 a, b, ¢)dadbde < //min{hl(a)l—éhg(b),hl(a)hQ(b)l—s}dadb <
0 0 O 0 0
0//---dadb+o//---dadb<

aP>bd aP<bd

// hi(a)ha(b 3dadb+0// hi(a)'~ @ hy(b)dadb

ad<b

Q\'ﬁ

The first term can be estimated by

A 1
//hl hg ddadb://hl( )a”_ &p—hg(b)l_idadb

'Q\'ti

We need

Qs

b<a

and we conclude. This is done by

>

1 r
/ ap_th(b)l_%db <a'? / ha ()b db /b_db = const
0

b<a

X

23
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Here Holder’s inequality was used in the first inequality and
A A
-1){1l—=)—-&&==0.
(g )( d) &
g.e.d.
Remark 1.32. Another application of the Layer cake representation is the pgr theorem,

e let p<q<r, (fn), CLP, LY L" and || fullze, || fullzr < C and || ful|re = € > 0 then
there exists a subsequence such that f, — f # 0. (Exercise 2.3.) U

1.4 Fourier Transform

For all f € L'(R?) we may define the Fourier transform to be

i) = [ e eas

where k- x = 2?21 kjx;.

4 Y
Theorem 1.33 (Plancherl). o For all f € L*(R?) N L2(RY), || fllz2 = || f]lze-

e We can extend the Fourier transform to L?*(R?) as an isometry, i.e. for all f €
L*(R?)
1Nl = (/]2
and therefore for all f, g € L?(R%)

\ DJ

é N
Proposition 1.34 (Properties of the Fourier Transform). 1) (Inverse formula) Let

F(x) = [ f(k)e*™*=dk, then
Rd

S~
I
k'ﬁ)(
I
&N(>
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2) (Convolution) f * g(k) = f(k)g(k).

3) (Fourier vs. Derivatives) Let D* = 0g1 - -- 094 where (71, ..., 24

(Oél,...,

ag) € N&. Then
Do f (k) = (2mik)* f (k)

where (2mik)* = [[}_,(2mik;)*, for k= (k1. .., ks) € R%.

) € RY and o =

25

Y -
e~ml1*(k) = L
A\ = Y
Proof.  2)
f/*\< ) /(f*g _QkadLE //f Qﬂzk:cdxdy o
R4 R4
//f 27mky )6 2mik-(z— ydﬂfdy—
Rd Rd
=/ﬂwamwm/ma§%“w=fwm@
R4 Rd
3)
iﬂmz/@meﬁmm:—/ﬂ@%@*%wnz
R4 Rd
__ / F() (=2mikn ey = (2miky) ().
q.e.d.

1.5 Sobolev Space

(
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Definition 1.35. The m'™ Sobolev Space is defined to be the Banach space

B = {f € L*(R%)

d

VYa € N : |af :Zaj <m = DafEL2(]Rd)} =
j=1

= {f e L*®") | @+ kD2 f(k) € L2®RY |

with norm

1fllem = [> IDFII3..

|a|<m

An equivalent norm is given by

2
2

\/ZH<1+ )5

<m

Remark 1.36. The derivatives used in this definition are so-called “distributional

derivatives”. They coincide with the normal derivative if the function is differentiable

and shall be discussed further in [section 3.1 O

1.6 Hilbert Space

é N
Definition 1.37. A complex Hilbert space 7 is a Banach space equipped with an

inner product (-, ) that is anti-linear in its first argument and linear in its second, i.e.

(M, ag) = A {f, g). The corresponding Banach space norm is given by

1flloe = V(S f)-

\ DJ

4 N
Definition 1.38 (Orthogonality). f is said to be orthogonal to g, f L g, iff (f,g) = 0.

An orthonormal family (f,),, is a sequence of functions in % such that (f,, fm) = Onm.,

where 0, is the Kronecker delta.

An orthonormal basis (f,), is a sequence of function in J# that is an orthonormal
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family and is complete, i.e. for all f €

(VneN:fLlf,) < f=0.

Remark 1.39. For all Hilbert spaces there exists an orthonormal basis (by Zorn’s

lemma). In this lecture, we will always consider separable Hilbert spaces, i.e. Hilbert

spaces with a countable basis. 0
é N

Theorem 1.40 (Parseval). If (u,),—, is an ONB of 5, then for all u €

lullZe = > 1 (s w) [
n=1
Moreover,
u= Z (U, W) Uy,
n=1

N U Y

’
Corollary 1.41 (Bessel’s Inequality). If (uy), .y is an orthonormal family, then for all
u € H .
(= Rk

n=1

4 Y
Theorem 1.42 (Riesz Representation Theorem). Let £ € H* be a bounded (or con-
tinuous) linear functional £ : 7 — C, then there exists a unique v € H such that

Z(u) = (v, u)

or all u € . O
J
o Yy
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é Y
Definition 1.43 (Weak Convergence). A sequence (u,), C - converges weakly to u,

e U, — y, iff for all v €

(v, Up) e, (v,u) .

Remark 1.44. Any separable Hilbert space is isometric to L*(R), i.e. there exists a
unitary operator T : # — L?(R), that is T is linear and for all u,v € 5

(u,v) = (Tu,Tv),- .

As a consequence, we have the Banach-Alaoglu theorem, [Theorem 1.20| i.e. if (u,),, is

bounded in # then there exists a subsequence such that u,, Lty weakly in 7.

The Banach-Steinhaus theorem, [Theorem 1.21] also holds for all separable Hilbert

spaces by the same argument. 0



Physics Introduction

Remark 1.45. For more detailed information on this section see: http://www.mathematik.

uni-muenchen.de/~nam/notes_ws18_19_1.pdf. U

Postulates of Quantum Mechanics

e (State): Described by an element ¢ € . of a Hilbert space JZ.
e (Properties): Given by “Observable” linear operators on ¢
e (Measurement Value a): Eigenvalues of A

e (Probability for a): 3=, screr(a_an | (@ 7]%) |?, where |a,4) form an orthonormal basis
of the eigenvectors of A corresponding to a, i.e |a,i) € ker(A —a). Using this basis the

measurement probability can also be written as

> \<a,iw>|2=2=<w\a,i><a,z’|w>=2w\Prw ZHPWHQ

|a,i)€ker(A—al) i

where P := ) |a, i) (a,i| is the projector onto the subspace of a eigenvectors.
e (Measurement): After the measurement the new state is given by an eigenvector of a
o (Dynamics (I)): 4 |¢) = —iH1,
e (Dynamics (II)): |¢,t) = Uy |1, 0).

The last two points are equivalent by Stones theorem.

29
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Postulates of Classical Mechanics
In terms of point particles (the classical equivalent of pure states, i.e. wave functions):

e (State): Described by an element (z,p) € T*Q in phase space.

(Properties): Given by observables A, i.e. functions on 7*Q.

e (Measurement Value a): A(z,p) =a

(Probability for a): If A(z,p) = a then probability is 1, and otherwise it is 0.
e (Measurement): After the measurement the system is in the same state.
e (Dynamics): %(z,p) = Xu.

In terms of probability distributions (the classical equivalent of mixed states, i.e. density

matrices, incorporating classical as well as quantum mechanical lack of knowledge):

e (State): Described by a function p(z,p) on T*(Q) phase space.

(Properties): Given by observables A, i.e. functions on 77*Q.

e (Measurement Value a): A(z,p) =a

(Probability for a): P(a,p) = [ 4 p)=ay P, P)dzdp.
(#)1{A(e.p)=a}

e (Measurement): After the measurement the new state is given ”
Pla,p)

o (Dynamics): 4p = £x,p={H, p}.

Strange Observations
Assume that particles only have the properties
e C (colour): red/green (r/g),

e S (status): hard/soft (h/s).
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Further assume that we have two apparatuses a colouriser C which takes as input a particle

of any type and may produce a red or green. Analogously we have the same for the status

N

S.

Suppose that we our experiments yield the following uniform distributions[]

]P’(—>C*):%, IP’(%CA’%SA):%, P(—>é—>§—>é):é

However, we also measure

L1 1
P(— C) = 5 Fer (r7) = Paa(9g9) = 5,Pea(rg) = Pes(gr) =0,

57

1
Pepe(hrr) = Pepa(srr) = Pepn(hgg) = Pgpe(sgg) = 1

and the other probabilities of the last measurement are 0.

This is the content of the Stern-Gerlach experiment.

EPR - Einstein, Podolski, Rosen (1934)

They made two assumptions of locality and reality and took QM on face value and a system

of 2 particles in 1 dimension, i.e.
P (@1, 15) € A @ A" = LP(R?) ® L*(R?) = L*(R®)

Suppose that ¢ = d(z1 — x9 — L)d(p1 + p2), where d is an almost § function.
If we measure x;, we know also o = 1 — L and similarly if we measure p; then we know

that P2 = —P1-

Bell Inequality

Suppose that we have reality and locality. Imagine two particles are fully determined by A\, p
and measurements a, b, ¢ such that results of the measurement are a(), b(X), ¢(A),a(p), . ..,
are functions of A, p.

Suppose that we have a source of particles producing A;, p;, . . ..

Say that a, b, c are polarisers in direction «, 3, respectively.

"'Which is the case if the eigenbases of S and C are mutually unbiased.
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Suppose that our apparatus gives only £1. Suppose that we have a source of pair (A;, i),
such that ¢(A;) = ¢(p;) then

L —=b(ps)c(Aj) = a(Xj)(b(py) — c(pj)), or 1 —b(p;)c(A;) = —a(X;)(b(p;) — c(p;))
Taking the average over many pairs j = 0,1,..., N — 1 we get the inequalities
1 — (bc) = max{(alb —c|),— (a[b — ¢]) }

1.e.

1 — (bc) > | (ab) — (ac) |.

Quantum mechanics violates this inequality.



Chapter 2
Principles of Quantum Mechanics

Basic Setting of Quantum Mechanics
e A quantum state is a vector in a Hilbert space 7,
e Observables are (bounded or unbounded) operators on J¢,

e The Hamiltonian H is a self-adjoint operator, with (i, H1) representing the energy of
the state 1),

e The Schrodinger equation:
Opp(t) = —iH(t)

e Mixed states: + which are trace class operators on 7, v > 0, Try = 1 which is

equivalent to
¥ =D i fu) (uil

where (u;); is an orthonormal family, A; > 0 and ). \; = 1.

Remark 2.1 (Dirac “Bra-Ket”). By Riesz’s representation [Theorem 1.42| 7 = J*

with the isomorphism being given by

v— (L s u s (v,u))

for all u € 7. We say that a state |u) € . is a ket, and (u| € #* is a bra. In

33
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particular the inner product of u,v € J# is written as

(ufv).

If u € S, then |u) (u| is the projection onto u, i.e.

(lu) (ul)e = (Ju) {ul) [¢) = (u]¢) [u).
——

eC

Remark 2.2. In classical mechanics we think of particles as being point-like and moving
along fixed trajectories in phase/configuration space. In particular their dynamics is

determined by the set of equations

with (z,v) € R? x R?.
However, within classical mechanics the hydrogen atom is not stable. The ground

energy of that system is given by

f mu? 1
in —— — ]| = -
(x,v)ERI XRE 2 |ZE| ’

which leads to this problem. [l

In quantum mechanics a particle is described by a wave function ¢ € L2(R?) with [|1)]| 2 = 1,
where [¢(z)|? is thought of as the probability distribution of the position of the particle, in

particular

P(v e @) = [ lo()ds

2
describes a probability distribution for the mo-

Analogously, its Fourier transform ‘@/A)(k:)

mentum.
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In this case the energy of a particle in the Hydrogen system is given by

<¢JM&=<%MW¢>—<¢er>zjwﬁkm¢%mei/E%%iu:

|z
2 1
= [(votr - M = (o (-a- L)),
|z ||
4 N
Definition 2.3 (Momentum Operator). We define the momentum operator p to be
given by
p=—iV
in z-space, or in k-space
p =27k
G U 4

2.1 Stability of the Hydrogen Atom

E(u) = /(|Vu|2 - %)dx >-C

R3

Why does

hold for all w with ||u||p> = 17

We can prove this with the help of so-called uncertainty principles.

4 Y
Theorem 2.4 (Hardy Uncertainty Principle). If u # 0, then u(z) and u(k) cannot both

have compact support. A stronger version of Hardy’s uncertainty principle is given by:

If foraa >0
[u(@)] S ek

then

as |k| — oo.
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Note here that

\ y

,
Theorem 2.5 (Heisenberg Uncertainty Principle). For all u € €1(R?), |ulz2 =1

( / |Vu|2d-r) ( / |x|2|u<a:>|2dx) =

\ y

Proof. See Exercise 3.4. q.e.d.

Remark 2.6. The Heisenberg uncertainty principle is not enough to prove the stability

of the Hydrogen atom! O
’
Theorem 2.7 (Refined Hardy Uncertainty Principle, Hardy’s Inequality). For all u €
%. (R°),
1 [ |u(z)?
[ V@ > [
R3 R3
N U Y

Proof. Let g(x) = u(z)|z|”?. Then g(0) = 0 and

Gute) - (2} - VD) L

|72 2 27

which implies that

2] 4 faf |z ]?

Vu()? = Y@L | L@l o Vo)

Integrating over this expression yields

or _ [(IVg@P L [lu@) Vy(z)g(z)z
/\Vu(:v)] de —/ 2] dx+4 BE dz /iR PE dz.
T
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We claim that the last term vanishes which proves the assertion. To see this we integrate by

parts
e N Iy
= —2r1]g(0)f* = 0

because ¢g(0) = 0 and —Aﬁ = 4md(z) (in the distributional sense).
q.e.d.

Remark 2.8 (Comments on the Proof). We proved that

£(u) :R[OW - }1%)‘“ > 0.

If there exists a minimiser for

o1 (- 5

then it would have to solve the Euler-Lagrange equation, i.e. %5 (u+ tp) = 0 for all

¢ € €>°. In this case this is equivalent to

(—A - 4’;2)1@) 0 = ufe) = ﬁ

However, —1» ¢ L?(R?) and thus Hardy’s inequality is strict, i.e. for all u 2 0

EE
L [ |u(x)P
2
- dz.
/|Vu| > 4/ PE

Still, we can think of Irr\;l/? as a “ground state”. The choice u(x) = liﬁf/l

the so-called “ground-state substitution”. U

corresponds to
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4 N
Theorem 2.9 (Stability of the Hydrogen Atom). There exists C' > 0 such that for all

u € G (RY), [lulls =1
[ (oY

R3

. J

Proof. We shall combine Hardy’s inequality with Holder’s

1/2 13
)P _ ([ lu)P o o
R[ TV Q() < 4R[|v<>|dx

Thus we find that

/(IVu(:c)l2 - ’ul(;?P) > /|Vu|2 — 2(/|Vu|2)1/2 > —1

where we used that 2 — 2t > —1. g.e.d.

1/2

Remark 2.10. In fact one can prove that

[l

RB

where the constant —}1 is sharp. O
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Sobolev Spaces

3.1 Distribution Theory

é N
Definition 3.1 (Test Functions). We define Z2(R?) := €>(R¢) with the very strong

topology

o "7 o in D(RY : | D%py,, — D¥p|| g0 === 0, for all o € N and

UnGN supp ¢, is compact.

\ DJ

[ R
Definition 3.2 (Distributions). We define the space of distributions 2’(R¢) to be the

set of continuous linear functionals on Z(RY), i.e.
T:¢6> — C.
We equip 2'(R%) with the weak topology, i.e.

T, =5 T: < Yue 2R : T, (u) == T(u).

39
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4 R
Example 3.3. Let f € LL (R%), i.e. 1of € L*(R?) for any compact set 2. Then
€>(RY) — C
Ty - .
d pr— / fe
Rd

Here T is obviously a linear functional and it is continuous. Too see the latter let
(pn), C 2(RY) with ¢, "= ¢ in 2(R?). Then (||@n||z~), is bounded by some
constant C' and €2 := |J,, supp ¢, is compact. Thus for all n € N

| fonl = | flapn] < C|f1q € L'(RY)

is an integrable majorant independent of n € N and we may apply the dominated

convergence theorem to conclude

lim Ty (pn) = = lim /fson /fw Tr(p
n—oo

\. J
4 ™
Lemma 3.4 (Fundamental Lemma of the Calculus of Variations). If f € L} (RY) and
[ fo =0 for all ¢ € €°(R?), then f = 0. O
\ J

Proof. 1) Assume that f € L*(RY). Then for all p € €> and all x € R?

(f *9)a /f ol —y) =0

because y — @(z—y) € €°. In particular, take g € €2°, with [ g =1, g.(z) := Lg(%).
Then g, * f 20, fin LY(R%). But g. * f = 0 by the above argument. Hence f = 0.

2) If f € Li . (RY), then taking g € €>°(R?), fg € L'(R?). We have
/(fg)so= /f(gw) =0
~~
Rd Rd S

for all ¢ € €>=(R?). Applying the first step to fg € L*(RY) we conclude that fg = 0.
Thus f =0 on supp g. But g is arbitrary in €>° and therefore f = 0.
q.e.d.
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4 Y
Definition 3.5 (Derivatives of Distributions). If T € 2'(R?Y), we can define 9,,T €

2'(RY) via
(02, T)(¢) = =T(0x,)

for all ¢ € €>°(R?). In general we define for a € N4, DT € 2'(R?) via

(D°T)(p) = (=1)T(D*).

Remark 3.6. The motivation for this definition is that for f € €(R?)

[onte=- [ 0.0

for all p € €>(R?). In this case, 9,,Tf = T, t, 1.e. the distributional derivative equals
the classical derivative wherever the function is differentiable.
To make sure that this derivative is well-defined, one has to check that ¢ — T'(D%p) is

linear (trivial) and continuous in Z(RY). (Exercise) O

’
Theorem 3.7.

H"(R?) = { f € L2RY) | [k f(k) € L*R?) } =

= {f e L*(R") | D*f € L*(R?) for all |a| < m}.

Proof. Take f € L2(R%), with |[k|™f(k) € L2(RY). Take g such that (k) = (2mik)*f(k)
which is in L2(R?) for all |a| < m. In particular we also have g € L*(RY).

Now we prove that ¢ = D f in the distributional sense, i.e. for all ¢ € €

[oe= e [ 070) = [g= e [T
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To prove this we use Placherl’s identity to get

[wo= [ o= [E i fak = (-1 [ TR HE )k =

e / Dog(k) f(k)dk = (~1)* / Dot

The other direction is an easy exercise.

(Theorem 3.8. For allm > 1, €= (RY) is dense in H™(RY).

2)

Proof.

ge(x) == 2g(%). Then €°(R?) 3 g. * f =20 fin L2(RY).
Moreover,

O (92 % f) = g % (0uf) = 00, f
in L2(RY).

If f e H'(RY), take h € €>°(RY). Then fh € H(RY) and

Op,(f1) = (O, f) h+ [ (O, h),
€L? 2

i.e. for all p € €

/ Fh(Dn0) = / (Do )b+ F(Du))i

1) Take f € H'(R?). Assume that f has compact support. Take g € €, [ g =1,

This is left as an exercise. Thus fh and 0,,(fh) have compact support and we can

approximate fh by €>°(R?) functions in H'(R?). Finally, we can choose a sequence

(hn),, C €2° such that

n—oo

fhy == f in HY(RY).

(e.g. take hy, = 1if |z| < n, hy(x) =0 if |x| > 2n and |Vh,| <

€ (Exercise)).

qg.e.d.
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3.2 Sobelev Inequalities

Remark 3.9. To see that Hardy’s inequality is sharp we may use a so-called scaling

argument. Let u(z) — Au(fx) be a dilation. Then for A = 1 for example we have

dx Vul?
/yvu(ex 2dx:/€2|Vu x)|€—3:/| £| dz
R3
\U(fﬂf) /!U ldr \U( )?
_ dr
/ || 26 l]z]?

O
4 Y
Theorem 3.10 (Standard Sobolev Inequality). If d > 3. Then for all u € H*(R?)
/ |Vu(z (IR/ |u(x)|Pd
Rd
forp= . Here the constant C' = C(d) is independent of w. In particular we have
V3 . a1
HVUHLZ(Rd) = 7(27’(2)3 HUHLG(RG) ~ 2.34HUHL6(R3).
N U Y
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Remark 3.11. The Sobolev inequality is invariant under the dilation
ug(x) = €%u(€x)

for which we have ||u||r2(ga)y = [|©]|2(re) and

/\vug( VPdr = /M? (Vu)(lx)] dx—éz/\Vu( )[Pdx

R4 R4

/|u@ )Pda ([R/e u(lz)Pda :ﬂd/\u(x)ypdx _
Rd
— (593 /]u(x)|pdx

RSN

BN

If we want

/|VWP >c /yum — @2/\Vu]2 > % /|uyp
R4 d R4 d

This holds for all ¢ > 0 with a universal constant C iff

2d 2d
D b d—2

Lemma 3.12. Let cs := W_%F(g), where T'(s) = fooo e~tts=1dt. Then, on R?

. Cd—s
(k) o |k|d—s'

for all 0 < s < d. As neither the left nor the right-hand side are integrable this is taken
to mean that for all f € €>°(R?)

g\ Cd—s
e S = et )
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L 1)

Proof. Making the substitution ¢ = 7w\|z|*> we find that

[(s) = /e_tts_ldt: /e_“’\|x|2(7r)\|x|2)8_17r|x|2d)\.
0 0

Therefore -

F(%) = ﬂ5|x|s/e‘””|2)\§‘1d)\.
0

Thus we have for all z € R?\ {0}

o0
C _ 2, 8_
= [ e N2y,
||
0

As we know the Fourier transform of the Gaussian

_ﬂ-)‘l'l2 k’ =
R =
we find
= :/e—“'|2)\3‘1d)\:/6 R /e_WMk'z)\g)\l_;_z =
-] % A
0 0 0
- —m\k 2 dfsfl . Cd_s
—/e X" W= T
0
qg.e.d.
Proof of [Theorem 3.10. Define g(k) = |27k|u(k), then
3 3 3
IVule = { [lzenPlapar ) = ( [lawpar) = | [lo@Pas | = ol
d d d

On the other hand

1 1 ¢ 1 Cdfl\
k) = — (k) = ———=xg(k
|27Tk|g( ) 21ey |k:|g( ) 27mey |x]dt *9(k)

(k) =
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by the above lemma. Therefore,

Cd—1 1 Cd—1 1
u(x) 2wcl(|x|d—1 *g> (z) 2 / |x_y|d_1g(y) y
Rd

Thus we want to prove that

1
9]l L2 ey = CHW * g :
LP(R4)

Recall that by the Hardy-Littlewood-Sobolev inequality

/ f(ff)(H%*g)(w)dx - [ [ 22wy < el

|z — y|t
de

where % +5+ %5 =2 ie ¢= 2% Now using that
f(z)h(z)dz
e = swp U 5
feLa(RI) {0} [ £ 1lzs

we get

' 1 5@ (= 0) ()

T *g = sup < Clgllze

|- L7 (RD)  feLi(RD\{0} 1 £l La

where %—i— d2id2 =1,ie ¢ = dQTdZ.

qg.e.d.

Remark 3.13. The proof of the sharp constant is more complicated. It requires so-

called “rearrangement inequalities” i.e. for u* radial

IVullpz = [Varllez, lulle = [lu*]z
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Example 3.14 (Using Sobolev’s Inequality to prove the
Atom). We can prove the stability of the hydrogen atom

2
J J ||

for all u € H'(R?), with [Jul|z2 = 1. We know that

3 2
[ 19 = S Hul,
R3

and
R[|u<x|>|2: [ o, [,

~
Stability of the Hydrogen

ks |z ks
lz|<R |z|>R
1 2
3 3
1 lu(x)|? ™3 1
< / u(x)|® / WE + / I dr < HUH%G4(§) R+ I
z|<R z|<R |z|>R
G J
é N
Theorem 3.15 (Sobolev Inequality in Lower Dimensions).
d=1: For all 2 < p < o0 we have
lullzr@®y < Cllullm @)
Moreover, H'(R) C €(R), with the embedding ¢ : H'(R) — % (R) being continu-
ous, and ||ull3e < ||t/||z2||ullz2 for all w € H'(R).
d=2: Forall2 <p< o0
lullr@2) < Cllullmw2).-
N []J

Proof.
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d =1: Take u € €>°(R). Then

u(x) = /x o (t)dt = — /oou'(t)dt

Thus for all z € R o
1
)| <5 [ ol

and therefore

)P = uto| < 3 [ |5 02

dt:/!u’(t)\IU(t)\dt< 'l 2l 2

Thus

lullZoe < llellzellullze < fluliz-

Moreover, ||u||r2 < ||u||g:. By interpolation we therefore have for all 2 < p < oo
[ull e < max{[Jull 2, lJull L} < l[ulla @)

Now for u € H'(R), then we can find a sequence (u,) C %> such that u, % u in
H'(R). Moreover

7,M—+00

0.

||un - UmHLOO(]R) < Hun - umHHl(R)

Thus (uy), is a Cauchy sequence in L*, i.e u, — v € L>. However, using the implied

weak convergence it follows that v = v.

We also have for any compact set Q C R, (uy,),, is a Cauchy sequence in €' (€2) with the
supremum-norm for any compact 2. Thus u,, — ¢ in €(2). Thus u!Q =p € E(Q).
Since € was arbitrary it follows that u € € (R).

d = 2: We take u € €>(R?). We first prove that

||u||L2(R2) < ||Vu||L1(R2).



3.2. SOBELEV INEQUALITIES
Indeed
1 (o]
Iy [l
17 ,
(@, y)l < 5 [ 19yulz,2)|dz
Therefore,

1 oo o0 , /
uw)f < [ [ 10l .

—00 —00

Taking the x,y integrals we now get

1 1
s <5 [ [ [ [10atzlo e i < | [ 19uto ity
R R R R 2

and thus

lull2 < [[Vull -
Using ||ul|z2 < ||Vul|r with w replaced by u™, n € N we get

2

/IU(&)IQ”dS< (R/V(U(é)”)dﬁ = (R/HIVU(S)HU(S)”ICE <

49

ol ) ) st ) ([ ) -

< (n)?|Jull;

Thus |Jul|g2n (R?) < V/n!||ul| g1 () for all n € N.

For any 2 < p < oo, we can find n € N such that 2n < p < 2(n+ 1) thus

lullr < max{lull zn, [ull 20} < N/ (0 4+ DY|ull g2,

Le. |lullrr < Cpllu|lgr(re). Here we cannot take p = oo because C, 2% %

For v € H*(R?) we approximate it by a sequence of € functions.
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Remark 3.16 (Riesz-Thorin Inequality for L? spaces). For p < ¢ < r we have

ol za < [l @l

where 9(q) = % which can be proven using the Holder inequality. U

Remark 3.17. Recall that weak convergence u, “—— u in H'(R?) means that for all
p € H'(RY)

n—oQ

<Un, SO>H1 — <U, 90>H1
where

d
<u7 Q0>H1 = <u7 @)LQ + <VU, VS‘D)L? = <u7 Q0>L2 + Z <8$1u7 aﬂ?i@)L? .

i=1

U
Lemma 3.18. Weak convergence u, ~—— u in H(R?) is equivalent to
Uy 2N U, in L?,
O, Un, Tﬁaxju in L? forallj=1,...,d.
q 2

Proof. («=) Trivial as

n—oo

<un7 90>L2 + <Vum v90>L2 E— <u7 90>L2 + <Vu? V90>L2 = <u7 90>H1

(=) Define for all ¢ € L? the functional
Ly v, V).

This functional is a linear and continuous map L*(R?) — C and H!(R?) — C because

lelle < llpllar

n—oo

Thus u, — w in H* implies that .Z,(u,) —— Z,(u), i.e. for all p € L*(R?)

n—o0

<una 90> L2 <U, SD> L?
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Analogously u,, — u in H' implies that 0,,u, — 0,,u in L%

51

q.e.d.

7

Definition 3.19 (Kernel of Operators). For an operator K : L?(RY) — L*(R?), we call

a function K (x,y) the kernel of K if for all f € L*(R?)

(K f)(x) = / K(#,5)f ).

)

O

.

A\ y
é Y
Example 3.20. e Green’s Function of the Laplacian: If K = (—A)~! and

d = 3 then
1
K(r,y) = ——.

o Heat Kernel: Let K = e ie.
B (k) = e~ f(k)

then
1 _ le—y|?

e =G(r—vy).

This is the case as

— ~

G x f(k) = G(k) f(k) = 7™ (k).

~

Lemma 3.21 (Heat Kernel). If f € L*(R%), then for all t > 0
etAf' c Hm(Rd)
for all m > 1. Moreover, if f, — f weakly in L?*(R%), then

etAfn n—0o00 etAf
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point-wise and for any bounded set Q C R?

lgetAfn n—)_oo) lgetAf
strongly in L?(R?).

1) If f € L? then

Proof.
B f(k) = e f (k)

and thus for all m > 1

(1+ K2 EEB (k) = (1+ [K[)F e ™ (k) € LA(RY)

because f € L? and (1 + |l€|2)%e*t‘2”k‘2 is bounded. Thus €2 f € H™(R?).

2
tA = 1 6_%
N = g [ T

For all z € R? we have

tA _ 1 —‘z;g‘Q n—oo 1
(6 fn)(x) (47Tt)gR[e fn(y>dy—> (47Tt)%Rd

|93*y\2 2 d
€ L*(RY).

because f, — f weakly in L? and e~

Moreover if z € , for Q C R? bounded, then

1
2

1 _le—y]? 2 9
e 2 dy W)y | <
d

o) = | [ o
] = | [ R0y <

1 y|? ’
< / iy | c<a
(4rt)

as f, — f and thus || f,||z2 is bounded. Therefore for any bounded set 1¢ the function

vl

[N]ISW

|2 fu(2)] < Cilg

is an integrable majorant independent of n. Thus as we have point-wise convergence
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by dominated convergence it follows that
Loe f, 2% 1ge!™ f

strongly in L?(R?).
q.e.d.

4 Y
Theorem 3.22 (Sobolev Embedding of H'(R%)). If u,, "= u weakly in H'(R?), then

for all Q@ € R* bounded, 1qu, ~—= 1qu strongly in LP(RY) for

2<p< 2L, if d > 3,
2 < p< oo, if d =2,
2<p< 0 if d=1.
L This means that the embedding 1qL*(R?) C 1LP(RY) is compact O )

Proof. First we prove that 1ou, — lqu strongly in L?(R?) using the heat kernel:

1ou,, — 1qu = 1Q(un — etAun) + 1g (emun — emu) + lg(emu — u)

and thus
loun — Toull > < [[1a(un — eS| . + [[1a (e un — ePu) || . + [[1a(eFu — ) | .-
Note that
o= )}, < fleu = ufff, = == / 1 e P
and
0<1—e ™™ < minftj2nk2 1} - ’1 . e—f‘%ﬂ < min{#2rk[%, 1} < t2rk|2
Thus

[ta(eSu—w)|ff, < [ tomkPla)Pat =t TulRs < dlulf.

R4
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Therefore we have
[1a(un = w)ll2 < CVE+ |10 (e P — e 2u) | ..
By strong convergence the last term converges to 0 as n — co thus

lim sup|| 1o (u, — u)|» < CVt == as

n—oo

. —r
which proves the strong convergence 1qu, 27 1qu.

The strong convergence in LP with LP with 2 < p < d2—_d2 =: p* follows by interpolation.

Note that we proved in Exercise 2.4. (i) that if f, — f strongly in L*(R?) and || f,]| .-
is bounded for p* > 2 (which follows by the Sobolev inequality, weak convergence and the
uniform boundedness principle) then f,, — f strongly in LP(R?) for all 2 < p < p*.

In the case d = 1, we have to prove that

n—o0

| lou, — 1ou||;« —— 0.

First we prove that u,(z) — w(x) pointwise. Since lgu, — lqu in L? we can find a
subsequence such that this holds. In fact, this is already true for the original sequence

because

Therefore, if u,(xy) — u(zg) then

) = o) = [ a8 27 [l = uly) - uloo)

xo o

as Ly, € LZ(Rd) Thus for all u,(y) — u(y) for all y € R.

From u(y) f u'(t)dt we have

1 1
Y 2| Y 2
) ~u(@) <| [ @t | [ W] < Vil

and

un(y) = un(2)] < ]z = ylllunlmr < CVlz =y
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Now we conclude that sup,cq |un(x) — u(z)] — 0 for any bounded set @ C R. Assume
that sup,cq |un(z) — u(x)| /A 0. Then there exists a 0 > 0 and a subsequence (u,, ), and a

sequence (xy), C € such that
g (21) — ()| > 3> 0

for all £k € N. Because (x), C € is bounded, we can descend to a subsequence, and assume

that x koo, Too. Thus

[t (@) — w(@n)| < un, (T8) = ur(Too)| + [tny, (Too) — ul@oo)| + [u(@oe) — ul@r)| <
<

CVwp — Too| + |tn(T00) — u(200)|

and therefore

nh_{go |tn (2n) — u(zy)| <O

which is a contradiction. Thus we conclude that

n—oo

0.

sup |un (x) — u(z)]
TEQ

q.e.d.

4 Y
Theorem 3.23 (Sobolev Inequality and Embeddings for H*(R?)). For any s > 1

)

[ £l = Cllfllz»
for all
2<p<d3‘és, if 2s < d
2 < p< oo, if 2s =d
2<p< oo, if 25 > d

In particular, if 2s > d, then H*(R?) C €(R?), e.g. H*(R?) C € (R?).
2) If f,, = f weakly in H*(RY), then for all Q C RY bounded

n—oo
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strongly in LP(R?) for all
2<p<d2s, if 2s < d
2<p< oo, if 2s =d
2<p< oo, if 2s > d
A\ L y
Sketch of Proof. 1) The fact that
[ fllrs = CllFl e
if p= 575 if 25 < d follows from the Hardy-Littlewood-Sobolev inequality (Exericse).

Now let us focus on 2s > d. We prove that

[ flloe < CII £

Hs (Rd) .

We can write

o< |ferseiwn] <  fiwr ey (@/1?;’6 E

if 25>d

N

< Ol fllas-

Next, we prove that H*(R?) C €' (R?). We have

N

£a) = )] = | [ (e = em) fyar

R ) ) |€27rzk:x_ 27r7,kz|
< )2 (1 + k1) dk dk
JLCIRCEER / T
d

2mik-x 627rik:-:v’

N|=
[NIE

Note that

&

< min{|27k||z — 2|, 1}
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and therefore

2mik-x 2mik-x’

2
e —e < CLlklf |z — 2/

for all € > 0 small enough. Thus

[NIES

|k — 2"

dk | < Celo—a'|2
ey ) S el

|f () = F@)] < Cel| f ]l e

if ¢ — 25 < —d which is equivalent to ¢ < 2s — d, i.e. for all such e

up @) = @)

N

< C.

2) For the proof of the embedding 1qf, — 1qf in L?, the only difficult part is the L*

convergence when 2s > d.

For the pointwise convergence f, — f in H*(RY), then f,(x) — f(x) for all z € R%

) = 7}l = | [ = (fulh) — F)) k| <
IRd
< e%m( fom f)dk: v 1fuk) — fR)|dk <
¢ ¢ 2 2\$ : 1
kI<K k2K
Ce
< el + .
S

for some ¢ > 0. Letting n — oo the first term vanishes as fn — f weakly and letting

K — oo the second one does as well.

q.e.d.

Remark 3.24. 1) The kernel K = (—A)™!, K(x,y) = m in R® appears in

=
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physical applications as the potential x — ﬁ, for example in Coulomb’s law

707
lz —y

and Newton’s law of Gravitation

mims
|z —y|

Recall that A(ﬁ) = 0 for any = # 0 in R®. More generally, if Au = 0 on Q C R?

then we call u a harmonic function on €.

O

4 N
Theorem 3.25 (Harmonic Functions). 1) If Au=0 on Q C R? open, then

1

B(z,r) lz—y|=r

for for all balls and spheres such that B(x,r),S(x,r) C Q This called the mean-

value theorem for harmonic functions.

2) OnR3, if f is a radially symmetric function, i.e. f(Rx) = f(z) for all R € SO(3),

e ) )
S Y AV —
R[ g =9 / max{lal, [}

This result is called Newton’s Theorem.

L O

.

Remark 3.26. 1) If u is harmonic on 2, then u € ¥*(2), which we shall not prove.

However, this means that it makes sense to talk about the values of u at a point.
2) Newton’s theorem can be used with f(x) replaced by a measure du(z) as well.
3) It also implies that if supp f C B,(0) and |z| > r then

fly) 1
/Ix—yldy_ |x|R[f(y)dy.

R3
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Proof. 1) By Stokes’s theorem we have
0= / Au(y)dy = / Vu(y) - ndy
B(z,r) S(z,r)

where m is the unit normal vector to the point on y € S(z,7). By a change of variables

we have

/ Vu(y) - ndy = r** / Vu(z + rw) - wdw
S(z,r) 5(0,1)

0— / %(u(m—l—rw))dﬁu:% / (e + rw)ds.

5(0,1) S(0,1)
This means that the value of the integral is independent of r, and thus

/ u(y)dy = r*! / u(z + rw)dw = 7! / u(z)dw = u(z)r*15(0,1) =

S(z,r) S(0,1) S5(0,1)

which proves the second equality. The first follows immediately from integration over

r.

2) Exercise!

g.e.d.
é Y
Theorem 3.27. If f € HY(RY), then |f| € H'(R?) and
RIVRILIIVSS i ) 0
VIf|(x) = 7 ff(z) #
0, if flz) =
. Consequently we have |V f(x)| = |V|f|(z)| for a.e. x. O )

Proof. Take f, € € such that f, — fin H'(R?) and where we assume that f,, and V f,, con-
verge also pointwise a.e. x. Write f,, = u,+iv,, and define G,,(z) = \/n—IQ + |un ()2 + |vn(2)]2—
%. Note that

= Vu(@) + |o(2)?
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pointwise. Thus

2u, Vu, + 2v, Vo, nooo_ W) Vu(r) +v(z)Vo(z)

VG, (x) =
2/ + [un@)? + [un(@)]? 7]

pointwise if f(x) # 0.
77770ther case????

We actually have L? convergence by dominated convergence as

()P ()P
Vi (@) + o ()] + L

<V un(@)2 + vn(2)? = | fu(@)| < F(z) € L*(RY).

|Gn(z)| = \/% + [t (2)|2 + |on(2) |2 — % _

The existence of F follows from [Remark 1.10, Thus G,, — | f| strongly in L?(R?). Moreover,
by the Cauchy-Schwarz inequality we have

_ | Vun + 0 Vun | Va2 + [va 2/ Vug 2 + [V, |2 -
_ < <
Vi [l 4 [ ? Vi [l 4 [v]?

<V |Vun|? + [Vua 2 = |Vfa| < F(z) € LA(RY).

VG ()|

Thus we have

%[V [S/VSS . 0
strongly in L?(R?). Thus |f| € HY(R?) with G(z) = V|f|(x). g.e.d.

Proposition 3.28. If (f,), C H'(R?Y) s.t. f, — f in L*(RY) and V f, — F in L*(R?),
then f € HY(R?), and Vf = F. O

Proof. Exercise! q.e.d.
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3.3 Application of Sobolev Embedding

Recall the Hydrogen energy functional

E(U):/|Vu|2— %dﬂ:

for u € HY(R3), ||ul|z2 = 1.

(Theorem 3.29. There exists a minimiser for €(u) in H'(R3). O )

Proof. Recall that

1 1 u(x 1
8(u)=§/]Vu|2+§/|Vu\2— %M}g/WuP—C
R3 _R? R3 R3

>-C

Thus £(u) is bounded from below, and if (u,),, is a minimising sequence
E(uy) == E == inf{E(u) |u € H'(R?),|jul|z2 = 1}

then (u,), is bounded in H'(R?). By the Sobolev embedding theorem we can pass to a
subsequence and assume that u, — ug in H*(R?) and 1qu,, — 1qug strongly in LP(R3) for
all 2 < p <6.

In particular we have u,, — ug and Vu,, — Vug, hence

hminf/\vunF > /|Vu0|2.
n—oo

Using strong convergence on bounded sets we have

[n(2)]* | noee [ Jul@)]?
dr 7% dr
|z] ]

which is left as an exercise. Thus we have

E =liminf &(u,) > £(up).

n—oo

To say that ug is a minimiser for £ it is therefore enough to show that ||ug|,2 = 1. Here we
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know that u,, — wuy in L?, thus
1 = liminf ||u,||zz = ||uo|| L2
n—o0

Assume that ||ug|lr2 = A < 1. Then we have E > 0 for
(A=0) up =0 and thus £ = E(up) =0

(A >0) Then
E = E(up) = AZg(%> >ME . E>0

for 0 < A\? < 1. However, we have E < 0 which is a contradiction, i.e. |Jug|/zz = 1 and

g 1S a minimiser for £.

To see this, take ¢ € €®(R3), ||l¢ll2 = 1, wo(z) = 20(Lz), |l@llr2 = 1 we have

ete0 = [ (9o - 2 s — M o [ <

>0 >0

if £ > 0 is small enough.

q.e.d.

Remark 3.30. In general, if V' is a “nice enough” potential such that

E= inf{/\Vu\z —i—/V(x)]u(x)\de

we H(E),Jul =1}

satisfies —oo < F < 0, then a minimiser of £ exists. O



Chapter 4
Spectral Theorem

Let 57 be a separable Hilbert space.

4 Y
Definition 4.1. e A linear operator A : & — J is called bounded if for a
bounded set B C ¢, A(B) is bounded.

e A linear operator A : 7 — J is called compact A(B) is compact in 7, if B is
bounded in 7.

A DJ

4 Y
Example 4.2. The inclusion H!(R?) C L?(RY) is trivial a bounded map.

For 10H(RY) C 1L2*(RY) for a bounded €, then the inclusion map H! — L? is even

compact.

.
rLemma 4.3. Let A be a linear operator 7 — 7. Then A
1) A is bounded iff x, 2% % strongly implies that Az, —— Az strongly.
2) A is compact iff x, 27 & weakly implies that Az, ~—= Ax strongly.
q =

Proof. 1) Exercise.

2) Assume that A is a compact operator. If z — z weakly, then we know that (), is

bounded in 4# by the uniform boundedness principle. By definition (Ax,), is compact

63
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in 2. This means that there is a subsequence (Aw,, ), converging to some y in JZ.
We need to show that y = Az. In fact, as A is bounded it follows that Az, == A,
hence it follows that y = Az and therefore Az, oo Ax strongly.

The convergence holds actually for the whole sequence. To see this suppose that
Az, # Ax for the whole sequence. Then there exists a subsequence (Az,, ), such that

for some e >0 forall / € N
|Az,, — Az|| > > 0.

But by the same argument we may find a subsequence of this subsequence that con-

verges to Ax which is a contradiction.

The converse is trivial.

q.e.d.
4 N
Definition 4.4. Let A be a bounded operator then
Ax
41 = sup 1] = sup Lol <
Jell<t N
and there exists a bounded operator A* : 5 — ¢ such that for all z,y € 77
(x, Ay) = (A*z,y) .
. A* is called the adjoint of A. We call A self-adjoint A = A* O )

Remark 4.5. The existence of A* follows from the Riesz representation theorem. Since

y— (z, Ay)

is a bounded linear functional there exists a unique z such that (z,y) = (x, Ay) for all
y € . We define A*x =: z.
From (x, Ay) = (A*z,y) for all x,y € # we see that A* is linear. Moreover, A* is

IThis is the case as for each y € 7 (y, A-) is a bounded functional with norm smaller or equal to ||y||||A]-
Thus there exists a ¢ € # such that (p, ) = (y, A-) and therefore as (p, x,) — (p, ) the assertion follows.
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bounded, in fact

[A™[] = sup [[A"z[| = sup sup |{z, A"y)| = sup sup |(z,Ay)|= sup [|Ay[| = [A].

G

=<1 llzl<1lyll<1 lyll<1 =<1 llyll<1
O
é N
Proposition 4.6. Let A : 77 — ¢ be a bounded operator. Then
A=A" <= Ve e ¥ : (z,Az) €R
A\ U y
é N

Theorem 4.7 (Spectral Theorem for Compact Operator). Let A : & — € be a

compact operator.

1) If A = A*, then there exist a sequence of eigenvalues (A\,), C R and an orthonor-

mal basis of eigenvectors (uy,), C F of A such that
A=A fun) (uy)
n=1

where | M| = |Ang1| and A, 2= 0.

2) In general, if A is not self-adjoint, then there exists a sequence of eigenvalues

(An),, C C and orthonormal bases (uy,),,, (vy), C H such that
A= o ltn) (vl
n=1

In both cases the convergence of the series of operators is taken w.r.t. the operator

norm. O y

Remark 4.8. If A = A* is compact, then all non-zero eigenvalues are of finite multi-
plicity.

If 7 is finite dimensional, then A can be regarded as a (finite) matrix. For matrices
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we know that if A* = A, then there exists a unitary matrix U such that

N O - 0
0 Ao

U*AU = diagonal matrix =
0 An

with {Aq,..., A\, } being the eigenvalues of A with “eigenfunctions”

0
Url1
0
U
Proof. 1) Assume that A = A*.
Step 1 Consider
sup | (u, Au) |
fJul| =1

We claim that there exists an optimiser for this supremum. To prove this take an

optimising sequence (y,,), such that ||¢,| =1 and

[Gons ) | %5 swp | u, A

Because ||¢,|| = 1 this sequence is bounded, we can descend to a subsequence
and assume that ¢, —— u; weakly. Because A is compact, it follows that

Ay, — Auq strongly. Thus
(On, Apn) == (us, Auy) .
This holds because, if x,, — x weakly and y, — y strongly, then

(Tny Yn) — (T,9) -

The proof of this is left as an exercise.
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Thus | (u1, Auy) | = supy, = | (u, Au) |. We only know that [Jus || < liminf,, o [|on | =
1. To prove that ||ui|| = 1 assume that ||ui]| < 1. This would imply that
(u, Au) = 0 for all u € J#. Hence Au = 0 for all u € #, ie. A= In

particular this would mean that any u € ¢ is an optimiser.

This means that there exists a u; € S such that |ju,|| = 1 and

| (u1, Aur) | = sup | (u, Au)|

[[ull=1
Since (uy, Auy) may either be positive or negative we have the two cases
(u1, Auy) = inf =1 (u, Au)
(ur, Aug) = supyj, = (u, Au)
Thus u; is an eigenvector of A, i.e.
Au1 = /\ul, )\1 = <u1, Au1> .
which is left as an exercise.

Step 2 Define V; = span{u;} = {/\ul | A E C} and write 7 =V, ® V.
Because Au; = Au, it follows that A : V3 — V; and A : V& — V5. In fact, if

¢ € V- then (p,u;) = 0 and thus

<A<107u1> = <907Au1> = )‘1 <§07u1> =0 AQO € ‘GJ'.

Now consider the restricted operator A : V- — V1. Using the previous step with
H replaced by Vi, we can find a uy € V- such that |lug|| = 1 and

| {ua, Aus) | = sup | (u, Au) |
uEVlJ'
flull=1

and Aus = Aug, Ay = (ug, Aug). Further we also have |A1| > |\

Next, define V, = span{uy, us} and write 57 = Vo ® V. Then we have A : Vit —

LAl gupy | G, Au) | = | (g, Auy) | < el

2This is the case as otherwise T
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Step 3
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V;- and we can repeat the argument to find a uz € Vb, |Jus|| = 1 such that

| (us, Aug) | = sup | (u, Au) |
uEVQl
[lul|=1

and AUg = )\3U3, )\3 = <U,3,AU,3> and |)\2| 2 ‘)\3‘

Then by induction there exists a sequence (u,), C ¢ of orthonormal vectors and
(An),, C R such that for all n € N, Au,, = A\,u, and

A = | (Un, Au,) | = sup | (u, Au) |.
The sequence \, —— 0 and as (up),, is an orthonormal family and thus converges
weakly to 0. Therefore Au,, — 0 strongly and therefore

lim [A,| = lim | (u,, Au,)| =0
n—oo n—oo

We have to prove that (u,), can be extended to be a basis of #. Suppose that
¢ L (un),en, then ¢ € ker A, ie. Ap = 0. Indeed, for all n € N

| (0, Ap) | < | (ttn, Aun) | = [An] =2 0.

This means that (p, Ap) = 0 for all ¢ € V5, where V., := span(u,),. Thus
Ayp =0 hence VL C ker A.

Taking an orthonormal basis (v,), of V.5, then we can write

A= ) (] + >0 vg) (v -
n=1 k

and (uy), U (vy,),, form an orthonormal basis for JZ.

2) Now consider a general compact operator A. Then AA* is compact and self-adjoint.
Thus

AAT = N2 Jun) (un
n=1

where A, — 0 and (u,),, is an orthonormal basis.



Here A2 > 0 as

2N = (u,, AA*u,) = (A*u,, A*u,) = ||A%u,|| > 0.

Defining v,, = %:” for A, # 0, then ||v,|| = 1 and

A*v Ay
Av, = A h_nm .
Uy, " N Anllp

Moreover,

(AUp, A Up) (g AAU) (U, A2 Uy
MAm o A A

- 5nm

(Uny Um) =

69

Thus (v,),, is an orthonormal family and therefore Av, A u, for all n € N where (v,,),,

is an orthonormal family and (u,), is an orthonormal basis. Thus

A= Z An |tn) (Un]

Here we can compliment (v,,),, by the basis of ker A and thus make (v,,), an orthonormal

basis.

q.€.

Remark 4.9 (Motivation). We want to be able to define a “functional calculus”, i.e. we
are interested in how to define for A, f(A) where f is some function. E.g. if f(t) = 2,
then f(A) = A2. But for f(t) = v/t how do we define v/A? O

d.

7

Definition 4.10 (Spectrum). Let A be a bounded operator in a Hilbert space ., then

e Resolvent of A

p(A) :=={X € C| (A — A)~" is a bounded operator on J# }

e Spectrum of A
g(A) :=C\ p(A4).

D
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r
Example 4.11. If ) is an eigenvalue of A, then Au = Au for some u € 7. Thus

LThus (A — A)~! does not exist and A € o(A).

ker(A — A) D span{u} # {0}

v

G

[ Y
Theorem 4.12 (Basic Properties of the Spectrum). Let A be a self-adjoint bounded

operator, then

e 0(A) is a compact subset of R
e sup 0(A)| = max |o(A)| = ||A||. Heresup|o(A)| = SUD o (4) ||

=

Proof. 1) Take A € C and |A\| > ||A||. Then A € p(A). To see this note that A — A =

A(1 — A71A), thus it is enough to prove that 1 — A™'A has a bounded inverse. This
follows by the first lemma below. This means that o(A) C B(0, ||A]|) in C.

We now prove that 0(A) C R. Take A = a +ib, a,b € R and b # 0. We want to show
that A € p(A). Consider A — A = (a — A) + ib. Then for all u € 77

1N = A)ull* = (@ — A)ul|* + B |ul® + 29 {(a = A)u, ibu) > [b|ul”

=0

This implies that A — A is invertible with bounded inverse by the second lemma below.

We prove that o(A) is closed which is equivalent to showing that p(A) is open.
Take A € p(A), then we show that X' € p(A) for |\ — X| sufficiently small.

N—A=N-A+Xr-A=((N=NA-A) " +1)(A—A).

Since (A — A)~! is bounded (X — A)~! is as well if (X — A)(A— A)~ +1)"" is. This
is the case as B = (N — A\)(A — A)7! satisfies

1Bl =N = All(A=A) M <1

if |\ — )| is small enough. Thus (1 + B)~! is bounded.
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4) Now we prove that ||A]| = max |o(A)|. We know already that sup |o(A)| < [|A||. The

other inequality is non-trivial. By third lemma below we have to prove that

sup [o(A)| > sup | (u, Au) |
flul|=1

Denote E := sup |o(A)|. We shall prove that £ > (u, Au) for all unit vectors u. By
the definition of E, E +t € p(A) for all ¢ > 0. Thus (A — E —t)~! is bounded.
Define f(t) = (u, (A — E —t)"'u) for ¢t > 0. Then we have by the boundedness of the
operators

F(t)=(u,(A—E—-t)"u)y = |[(A—E—t)""ul]* > 0.

Thus we know that f(¢) is an increasing function. Moreover,

lim f(t) = tlim (u,(A— E—t)""u) =0.

t—o00

This is left as an exercise. Thus f(t) < 0 for ¢t > 0, i.e. for allt >0
<u, (A—FE— t)_1u> <0
and thus replacing u by (A — E — t)u
(u,(A—FE—tu) <0

which implies that
(u, Auy < E+1t

for all unit vectors u and ¢ > 0. Taking the limit ¢ — 0 yields the result.

Thus sup |o(A)| = supy, =1 (u, Au). By the same argument,

sup|o(A)| = sup (— (u, Au)) = — inf (u, Au)

flul=1 flul=1

hence

sup [o(A)[ > S | (u, Au) | = [ A]

q.e.d.



72 CHAPTER 4. SPECTRAL THEOREM

Lemma 4.13. If B is a bounded operator and ||B|| < 1. Then (1 — B)™! is a bounded
operator and ||(1 — B)7Y| < (1 —||B|)~% O

Proof. Note we can define

— kE._ 13 E_. 1;
=) b= lim ) B = fim 4,
k=0 k=0
Since ||B]| < 1 the right-hand side is well defined as for n < m

“An - Am” -

< S B S BIF 2

k=n+1 k=n+1

> o

k=n+1

Thus (1 — B)_1 = lim,,_,, A, is well-defined and it is a bounded operator. Moreover,

j1-B)" < ZIIBH’“ 1—BIh"

The fact that (1 — B)~! is indeed the inverse follows as usual via

(1—B)(1—B)1=(1—B)§:Bk=1+§:3’“—§:3’“:0

g.e.d.

Remark 4.14. Here we used the fact that the set B(¢) of bounded operators on ¢

with the operator norm is a Banach space. 0

,
Lemma 4.15. If B is a bounded operator and || Bul| = b||u|| and ||B*u|| = b||u|| for all

| u € S then B~' is a bounded operator. O )

4 N
Lemma 4.16. If A = A* is a bounded operator, then

[A]l = Sup | (u, Au) |.
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[ R
Theorem 4.17 (Continuous Functional Calculus for Bounded Operators). Let A = A*

be a bounded operator. Then there exists a unique continuous linear map

P ¢ (0(A)) — B()
fr— f(A)

such that the following properties hold

1) If f is a polynomial f(t) = 3, a;t’, then

f(A) = ZajAf.

2) 1F (A= N1z
Moreover, we also have f(A)g(A) = (fg)(A) for all f,g € €(a(A)).
. This means that £ is an isometry of C*-algebra € (o(A)). O )

Proof. If f is a a polynomial, f(A) is well-defined. We need to prove that || f(A)| = || f|| e
for all polynomials f. To do this, we show that o(f(A)) = f(c(A)). We know that || f(A4)| =
sup |o(f(A))|. For every A € C we can write

fO =r=cl]e-1)

for t; € C, then
flA) = x=cJ[A-1).
J
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and

(f(A) —X)! is bounded

(A —t;)"" is bounded for all j

t; ¢ o(A) for all j

(t — ;)" is bounded for all j on o(A)
(f(t) — A)~! is bounded on o (A)

A ¢ o(f(A))

rrrtroe

>~
A
=
S
=

Furthermore, we thus have

[F (A = sup o (f(A)] = sup [f(a(A)] = [|/]loo-

By the Weierstrass theorem, we know that for any o(A) C R compact, the polynomials on
o(A) are dense in € (0(A)), i.e. for all f € € (c(A)) there exists a sequence of polynomials
(fn),, such that || f, — f||re — 0.

Then || fn(A) — fi(A)|| = ||fn — finllze — 00 as n,m — oo. Hence there exists a unique
f(A) = limy, o0 fu(A) and |[f(A)]| = [ fllze

Moreover f(A)g(A) = (fg)(A) for all polynomials and thus the same holds for all continuous

functions by the same density argument. qg.e.d.

We now want to extend the functional calculus to a larger class of function f.

é Y
Theorem 4.18 (Spectral Measure). Let A = A* be a bounded operator on J€. Then

for all w € F there exists a unique Borel measure p, on o(A) such that
(u ) = [ f@)dn o
o(A)

for all f € €(o0(A)). Consequently || f(A)u|l = || fllL2(o(a).dua) for all f € €(a(A)) and
we can extend f > f(A) for any f € L*(c(A), du,).

. DJ

Proof. Define the mapping

v € (0(A)) — C
| fr— 2(f) = (u, f(A)u)
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Then % is linear, continuous, positive, i.e. Z(f) > 0 for all f > 0. Here the positivity
follows as f > 0 implies that f = gg for some g € € (c(A)).
Then

Z(f) = (u, f(Au) = (u,5(A)g(A)u) = (u, g(A)"g(A)u) = [lg(A)u]* > 0.

as the continuous functional calculus is a C* algebra homomorphism. Then the result follows

from the following theorem.

4 Y
Theorem 4.19 (Riesz-Markov Thorem). Let Q be a Borel set in R? and let &£ :

©.(Q2) — C be a linear and positive functional. Then there exists a unique Borel reqular

measure p in ) such that

L(p) = / F(#)du(z)

Lfor all f € 6.(2) O

Remark 4.20 (Recall). A Borel measure p on € is regular if
1) pu(K) < oo for all compact K C €.

2)
w(E) = inf{,u(Uﬂ Q) { U open, E C U} = sup{,u(Kﬂ Q) ’ U open, K C E}

O

Sketch of Proof. For simplicity assume that 2 = R?. Then the measure yx is defined as
follows:

For all U open let
1(U) =sup{Z(f)| f continuous, 0 < f < 1,supp f C U}
Then if K is compact define

wK) = inf{o?(f) ‘ f continuous, 0 < f <1, f=1on K}.
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Then  can be extended to a Borel regular measure on R?. We can prove

~ [ f@)uto

for all continuous f by approximation. qg.e.d.

Continuation of Proof of|Theorem 4.18. By the Riesz-Markov theorem, there exists a unique

regular Borel measure i, on o(A) such that

(u, f(A)u) /f Yy

for all f € €(c(A)). Moreover,

LF (A)ull® = (u, f(A)" f(A)u) = (u, | [ |*(A)u) = / [P (@)dua(@) = [ 1220 a) du)-

Thus || f(A)u| = || fllz2(ea)du,) for all f € €(c(A)). This allows us to extend the map
[ f(A)u, for any f € L*(o(A),du,), i.e. if f € L*(o(A), duw,), then take a sequence (f,),

of continuous functions converging to f in L?(o(A), du,) and define

f(Au = lim f,(A)u.

n—o0

Remark 4.21. Here we did not define f(A) but only f(A)u which is simpler. O

é N
Theorem 4.22 (Spectral Theorem for Bounded Self-Adjoint Operators). Let A = A*

be a bounded operator on €. Then there exists a Borel measurable set Q C RY, and a

Borel measure p such that there exists a unitary mapping

7 H — L*(Q,dp)
' A— M,

i.e. UAU* = M, with M, being the multiplication operator on L*(€), du) with a function




(Mof)(x) = alz)f(2)

for all f € L*(2,du). Moreover, a is a bounded, real-valued function on 2. We can

7

Ltak‘eQ:U(A)><NCIR2 and a(A\,n) = A. DJ

Remark 4.23. An easy way to remember this theorem is to note

A+— M,,
i.e. A up to a unitary transformation is equivalent to a multiplication operator.
O
~
Example 4.24. The Fourier transform
fros f = [ e sy
Rd

Ldeﬁned on L?(R%) is a unitary operator by Placherl’s [Theorem 1.33] )

Proof.

Step 1 Recall that for all u € J#, there exists a unique g, on o(A) such that
() = [ fa)dno
o(A)
for all f € L*(0(A),du,) by the theorem on the Spectral measure.

In particular, there exists a unitary mapping

- L*(o(A), du,) — S,
. f— f(A)

where

Ao = { (A f € L*(o(A),du,)} C A
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which is a closed subspace, i.e. itself a Hilbert space, of the Hilbert space 7. It is left

as an exercise to show that

I, = span{Aku|k: € No} C .

If 77, = 7 we are done. In this case Q2 = o(A) and a(\) = X\ and we call u a cyclic

vector.
In general, if there is no cyclic vector, then we need the lemma below.

Noting that A : 7, — 5%, (why?) we can write

A:éAun.
n=1

Define the unitary operator

U: @@, = — L*o(A) x N) = P L*(0(A), dua,,)

neN neN

via

U=,

neN

Then we see that

UAU* = @(UMA\ o, UZ;) = D Marn)

neN
where a(A,n) = A. This is because

L*(0(A), dita,,) — L*(0(A), dpra, )

U, Al U
fr— U, (Af(A)) = zf(z)

%Ln Un *
q.e.d.

Lemma 4.25. For any bounded self-adjoint operator A on F, there exists an at most

countable orthonormal family (uy), oy such that



L 1)

N\
Axiom 4.26 (Zorn’s Lemma). Let P be a partially ordered set, with order <, i.e. it

satisfies
1)VaeP:a<a
2)VYa,be P:a<bANb<a = a=10
3) Va,b,ce P:a<bANb<c = a<c

Note that there may be elements that are not comparable, i.e. a Ab and b £ a.

If for all totally ordered subsets I C P (any pair (a,b) in I is comparable) there exists
a mazimal element ay, i.e. a < ay for all a € I. Then there exists a maximal element
m P, 1.e.

dJpePVYaeP:p<a = p=a.

. J

Proof. Let P = {(uy,), | (u), is an ONF of 7} and

(), < (vn), : = EP ., c P A,

Then Zorn’s Lemma tells us that there exists a maximal (u,),. We claim that J# =

@nGN ’%n :
Assume that 52 2 @, . H,,. Then there exists a v € H, u # 0 and u L S, for alln € N.

Because A : S, — S, it follows that A : (@ )" — (@ H,,)". Then we can define
¢, in the usual way. Then (u,), < (u,), U{u} because

P 4. < P . o A

which is a contradiction to the maximality of (u,),. q.e.d.

( Corollary 4.27 (Functional Calculus). Let A = A* be a bounded operator on 5. T hen]
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there exists a unique linear map

B(o(A),C) — B(s#)
f— f(4)

from the set of measurable, bounded functions o(A) — C to the bounded operators on

A, such that
1) If f(x) =Y t;27 then f(A) =D t;A%.
2) NIF (A = [I.fllz2
3) f(A)g(A) = (fg)(A)
4) (A = f(4)

5) f(oc(A)) =a(f(A)), in particular if f >0 then f(A) =20, i.e. (u, f(A)u) >0 for
all w e 2.

6) (Monotone Convergence) If f, 1T f pointwise, then f,(A) — f(A) strongly, i.e.
forallu € H, f,(A)u — f(A)u strongly.

N DJ

Proof. By the spectral theorem, there exists a unitary transformation U : 5 — L*(Q,du),
UAU* = M, is a multiplication operator. Then we can define f(A) by

Uf(AU" = My,

(My(ay9)(x) = fla(z))g(x)

for all g € L*(Q, du). Monotone convergence now follows from the usual monotone conver-

gence for functions. qg.e.d.

’
Theorem 4.28 (Spectral Theorem for Normal Operators). Let A be a bounded normal

operator on €, i.e. AA* = A*A. Then there exists a unitary operator U : 7 —
L3(Q2,du), such that UAU* = M, is a multiplication operator with a function a. Here

a 1s a bounded function €2, however we do not know if a is real-valued 0 )
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Remark 4.29. The proof is more complicated, e.g. in general f(A)* # f(A) for a
normal operator.
To prove the spectral theorem for normal operators we define the two self-adjoint op-

erators

A+ A* A— A*
S o
2 2
which commute X; X, = X5X;. We can apply the spectral theorem to X, Xy and

Xy

since they commute we can simultaneously diagonalise them. We can recover A =
X1 —1iX5 O

4.1 Unbounded Self-Adjoint Operators

Definition 4.30. Let A : D(A) — S be a linear, unbounded operator, where D(A) C

A, D(A) — . O

Definition 4.31 (Extension). An operator B is called a extension of A, A C B, iff
D(A) C D(B) and B\D(A) = A. O

é Y
Definition 4.32 (Adjoint Operator). We want to define A* such that (A*z,y) =

(x,Ay) for all y € D(A) and all z € D(A*). Here
D(A*) :={z e H#|Fz€ #Vye D(A): (z,y) = (z,y)} =

:{xec%”

L and we define A*z := 2. OJ )

sup | (z, Ay) | < o0
yeD(A)

Remark 4.33. In general, it might happen that D(A*) is very small and D(A*) #
. O
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é N
Definition 4.34 (Symmetric Operator). An operator A such that for all z,y € D(A)

(Az,y) = (z, Ay)

: is called symmetric. 0]

Remark 4.35. It is left as an exercise to show that A is symmetric iff (z, Az) € R for
all z € D(A) which in turn is equivalent to A C A*. O

Definition 4.36 (Self-Adjoint Operator). An operator A is called self-adjoint iff
A = A* (in particular D(A) = D(A*)). O

Remark 4.37. Find example of symmetric but not self-adjoint operators. 0

4 Y
Definition 4.38. Let A : D(A) — J be a (densely defined) unbounded operator. The

resolvent set

p(A) :={z € C|(z— A)" is well-defined as a bounded operator}

L and the spectrum is o(A) := C\ p(4) O

Example 4.39 (Multiplication Operator). Let (€2, 1) be a measure space. Let f : ) —

C be a measurable function. Define
M, D(My) — L*(Q,dp)
ur— (Myu)(z) = f(z)u(z)
where D(M;) = {u € L*(Q, )| fu € L*(Q, p) }. Note that D(My) is indeed dense in

L2(, u). (Exercise!)
This operator has the following properties

1) [[My]l = supyuy, <1 [Myullze = [|f|[z. In particular, M is a bounded operator
iff f is bounded.
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2) (My)* = Mj. To see this note that

(Mfu,v) = Q/ Fuvdy = / afodu = (u, Myv)

Q
and D(M5) = D(My) as fu € L*iff fu € L*iff |f||u| € L%
3) M; is self-adjoint iff (M;)* = M; iff f = f iff f is real-valued.
4)

o(My) =essran(f) = {z € C|Ve > 0: u(f ' (Be(z,¢)) > 0} =
={2€C|Ve>0:p({zr e Q||f(z) — 2| <e}) >0}

To see this note that z — My = M._; and thus (z — M;)™" = M(,_p-1. Thisis a
bounded operator iff (z — f) is bounded, i.e. ||(z — f) 7|1~ < oco.

. J
Example 4.40. If f : R = R, f(z) = |z|?>. Then M; is a self-adjoint multiplication
operator on L?(R%) and

o(M;) = essran(z — |z|*) = [0, 00
3 (My) = esstan(e - [of?) = [0,00) )
’
Theorem 4.41 (Basic Properties of the Spectrum). Let A : D(A) — J be a (densely
defined) unbounded operator on a Hilbert space F .
1) o(A) is a closed set in C.
2) If A is self-adjoint (A = A*) then o(A) C R.
3) If A is symmetric and o(A) C R then A is self-adjoint.
A\ U y

Proof. 1) We proof that p(A) is open. Take zy € p(A), then we prove that z € p(A) if

|z — 2| is small enough. We have

(z—A)t=(z—20+2— A= (((z — 20)(20 — A7t —I-]I)(zo — A))_l =

— (20— A ([ + (2 — 20) (20 — A7)
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where we used that (z0 — A)~! is a well-defined, bounded operator. Then if |z — 2| is
small enough ||(z — z0) (20 — A) || < 1 and thus (I 4 (z — 2)(z0 — A)~}) " is bounded
by [Lemma 4.13|

2) Assume that A = A*. We prove that o(A) C R. Take z € C\ R, then we prove that
(z — A)~! is bounded. Consider z = +i. We see that
I(A+d)[|* = ((A+ )z, (A +iz)) = [|Az]|* + [|=]*.
This implies that A 4 ¢ is injective and, together with the self-adjointness of A, that
ran(A +i) = .

e ran(A + i) is dense in ., because if y L ran(A + i) then y € ker(A 4 i)* =
ker(A — i) = {0}.

e ran(A + i) is closed. Take (A + ¢)z,, — a, we need to prove that a € ran(A + 7).
Because (A + i)z, is Cauchy sequence it follows by the above inequality that

1A+ i)z — (A+ D)anl* > |Az, — Az * + |20 — 2|

and thus (Az,), and (z,)
Ty, — x in .

are both Cauchy sequences. Thus Az, — y and

n

We need to prove that = € D(A) and Az = y. We know that A is self-adjoint,
A = A*, thus it is sufficient to prove that x € D(A*). We need to show that

sup | (z, Ap)| < 0o
p€D(A)
llell<1

We have for all ¢ € D(A).

(z, Ap) = lim (z,, Ap) = Tim (Azn, ) = (¥, ) -

Thus by definition, © € D(A*) = D(A) and Az =y, as D(A) is dense.
Thus
a= lim (A+i)x, =(A+1)z

n—o0

with x € D(A), i.e. a € ran(A + 7). Thus ran(A + i) is closed.

The same analysis also holds true for A — 1.
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This means that A 4 i is surjective and thus (A 4 i)' is well-defined. Moreover,
J(A i)all > flz] thus (4 £ < 1.

This proves that z = +i € p(A). In general, if z € C\ R, then z = Rz +iSz, Iz # 0.
Then

Sz

z—A=Rz2+S2z—- A= <i+%i_A)
Sz

Since 9%7‘ is still a self-adjoint operator and we may apply the previous result thus

(z — A)~! is bounded.

This concludes

A=A" = o(A) CR.

Assume that o(A) C R and that A is symmetric.

Then +i € p(A). (The same prove as above holds since symmetric operators are
closed.) Thus (A +4)~! is bounded.

We prove that D(A*) = D(A). Take z € D(A*), then there exists y € D(A) such that
(A+i)y= (A" + i)z
this implies that for all z € D(A)
(Y, (A —i)z) = (A+ i)y, 2) = (A" + 1)z, 2) = (z, (A = i)2)

as A is symmetric. Thus y = = because ran(A — i) = 2 and hence x € D(A).
qg.e.d.

N\
Theorem 4.42 (Spectral Theorem for Unbounded Self-Adjoint Operators). Let A :

D(A) — J be a self-adjoint operator on a Hilbert space. Then there ezists a measure
space (2, i) such that Q is a Borel subset of R, 1 is a reqular Borel measure and there

exists a unitary operator U :  — L*(Q, p) such that
UAU* = M,

for some measurable function a : 2 — R.
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Moreover UD(A) = D(M,) = {u € L?|au € L?}.
We can take Q = o(A) x N C R? and a(\,n) = \. O

Proof. We know that S = (A+4)~! is a bounded operator as i € p(A). Further S* = (A—i)~!
and §*S = SS5*. Thus S is a normal operator.
Applying the spectral theorem for the bounded normal operator S we find a measure space

(Q, ) and a unitary operator
Ut — LX)

such that USU* = M; for some bounded function f: ) — C.

Now we want to find a function a : Q@ — R such that UAU* = M,. Using S = (A+4)7! it
follows that A = S~ — 4 thus we might guess that a = f~! —i.

We now have to prove that this choice makes sense. Here f # 0 a.e. because from USU* =
My we know that o(S) = o(M;) = essran(f), however we know that 0 € p(S) and thus
0 ¢ essran(f). To see this suppose that f = 0 on B C Q with u(B) > 0. Then v = 1
is a non-zero function with M;u = 0, which means that 0 is an eigenvalue of M;. Since
USU* = My this means that 0 is also an eigenvalue of S. Thus there exists a ¢ # 0 such
that S¢ = 0, however we then have

0=(A+9)So=(A+)(A+i)Tp=09p

which is a contradiction.
Note that f~! might have singularities and hence @ might not be bounded.

Thus we can define a = f~! — ¢ and we have
UAU* =U(S™ =) U* =US™'U —i= (USU*) ' —i=M;' —i=Mps —i= M,

Here a is a real-valued function because UAU* = M, is self-adjoint. It is easy to check that
UD(A) = D(M,).
q.e.d.

Theorem 4.43 (Functional Calculus of Self-Adjoint Operators). Let A : D(A) —
be a self-adjoint operator on a Hilbert space F€ .
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Then there exists a unique linear map

o, B(o(A),C) — B(H#)
' f— f(A)

such that
1) Iff=1 (ie. f(z)=1for all x € c(A)) then f(A) =1 (the identity on 7).
2) IIF (AN = N171lze
3) f(A)* = F(4)
4) f(A)g(A) = (f9)(A)
5) f(o(A)) = o(f(A4))

6) Monotone Convergence: Let f, T f pointwise, then f,(A) — f(A) strongly, i.e.
for allu € 5, f,(A)u — f(A)u.

Dominated Convergence: Let f, — [ pointwise, and sup,, ||fnllze < oo then
fn(A) = f(A) strongly.

7) If AB = BA is well-defined, then f(A)B = Bf(A) for all bounded functions f.

\ DJ

Proof. By the spectral theorem we have UAU* = M,. Define f(A) by Uf(A)U* = My,
iLe. (Myau)(z) = fla(x))u(zx). g.e.d.

Remark 4.44. We used the seventh property to prove the Spectral theorem for normal

operators. 0

é Y
Example 4.45. Let A = (—A) on L*(R%). We that Fourier transform F is a unitary

operator and
Af (k) = [2mk[*f (k)

1.e.

f(-A)f* - M|27rk|2
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Consequently o(—A) = [0, 00) and

D(-A) = {u e L*(RY) | |2nk[*a(k) € L*} = H*(RY)

X —A is only self-adjoint on D(—A).




Algebras of Observables

Classical Mechanics

An experiment is represented by a function A(r, p) on phase space I'. Further it is physically
reasonable to assume that A is a bounded function, as any experiment has only a finite range
of possible results.

We can give this observable the supremum norm

[Alleo := sup [|A(r,p)| < o0
(r,p)el’

A state is given by a certain reproducible procedure of preparing the system. Then

L
w: <A)w:NZagw) eR

n=1

is called the result of the measurement A for the state w.

m
w "

To a high precision we have (A™) = (A)

The properties of w are
e normalised: w(1) =1
e it is a linear functional: &/ — C(R) where .o/ denotes the algebra of observables
e positivity: for A(z,p) >0, w(A) > 0.
) =

w(A / pl, p) Az, p)ddp

6
C* Algebra

89
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The experiments A are elements of a (C*) algebra 7.
A state is a linear, positive functional on 7, i.e. for A,B € & and A € C

w(AA) = Mw(A), w(A+ B) =w(A) +w(B)
Further we assume that
e Normalisation: w(1) =1
e Positivity: A is positive, i.e. if A = B*B then w(A) > 0.
Two observables are called equal
A=B:<= Yw:w(A) =w(B).
Note that these definitions apply that if A+ B =C

w(C) = w(A) +w(B).

However, it is very much unclear what it means to take the sum of experiments.

We define a norm on o7 by taking

|A]] = sup |w(A)].

é Y
Definition 4.46 (Algebra). An algebra < is

1. o is a complex vector space
2. @/ has an associative multiplication operation.

3. the multiplication is distributive with respect to the addition in &7 and the mul-

tiplication by scalars

4. o/ contains a unit for the multiplication operation
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é N
Definition 4.47 (*-Algebra). o7 is an algebra equipped with a complex conjugation or

adjoint operation * : &/ — o satisfying

(PQ)=Q"P*, (P+Q) =P+
(aQ)* = aQ", @) =@

4 N
Definition 4.48 (C_ - Algebra). A C'_-algebra is a C*-algebra equipped with a norm

which further satisfies

o PRI <[P
o Q] =l
o [QQ"[I = llQlllQ~l
o f1f=1
A DJ

’
Definition 4.49 (Classes of Elements on a C*-Algebra). 1. Self-Adjoint or Hermitea):

Q"=Q
2. Unitary: Q*Q = QQ* =1
3. Normality: QQ* = Q*Q
4. Projector: @ = Q = Q*

5. Positive: there exists C' € &7 : Q = C*C

Definition 4.50 (Resolvent Set and Spectrum). The resolvent set of A € o7 is

p(A)={z€C|(A-2)" e ¥}
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L The spectrum is the compliment of the resolvent. 0 J

Remark 4.51. Using the same argument as in the case of operators on Hilbert spaces

we may conclude that the resolvent set is open. O

4 N
Proposition 4.52 (Spectral Properties). o Hermitean: o(A) C R

e Unitary: o(U) C S*
e Projector: o(P) = {0,1}

e Positive: 0(Q) C [0, 0)

Remark 4.53. A state is a positive linear functional, i.e. w(A*A) > 0. O

~
Example 4.54. 1) Classical: A state is a function p on phase space satisfying

p(x,p) =0, [ p=1 and the action being given by

/ p(r,p)A(z, p)drdp.

T

2) Quantum 1: For the bounded operators B(7¢) of a Hilbert space ¢ the observ-
ables are unit vectors ¥ € ¢ with the action being given by

(v, AY) .

3) Quantum 2: We can alternatively form the density operator p, = |¢) (1|, where

p is a positive operator of trace 1. The state action is given by

TrpA.
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r
Proposition 4.55. For a positive linear functional w on &/ we have the following

“Cauchy-Schwartz” inequality
|w(A*B)|? < w(A*A)w(B*B)

In particular this implies that w is bounded and thus continuou. 0

y

States form a convex space, i.e. let wi,wy be two states then the for all A € [0,1], w =

Awi + (1 — Mwy is again a state.

1
Definition 4.56 (Pure and Mixed States). A state is called pure if cannot be repre-
sented as a non-trivial convex combination of two states.

Otherwise a state is called mixed. O )

r
Proposition 4.57. Any state w can be written as a conver combination of pure states

W= N, d =1, x>0
O

N y

(i) ;en Such that

( Definition 4.58 (Abelian Algebra). An algebra is Abelian if all elements commute. [ )

é N
Definition 4.59 (Algebraic *~-Homomorphism). A map 7 : &/ — 2 between *-algebras

is called a *-homomorphism if
e 7(AB) = n(A)n(B)
o 1(0A+ BB) = an(A) + pn(B)

o 1(A*) =7w(A)*
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é N
Definition 4.60. A character y is a *~homomorphism of A — C such that

(1) If exists (y(A) — 2)~1 if 2 € o(A) then x(A) € o(A).

(2) x is positive, i.e. x(A*A) = x(A")x(4) = x(A)*x(4) >0
(3) Any y is a state: x(A1) = x(A)y(1), hence x(1) = 1

(4) Cauchy-Schwartz |y(A*B)|* < x(A*A)x(B*B).

(5) Characters are pure states.

(6) There exist a character such that x(A) = ||A]l

A y
é N
Definition 4.61. The weak *-topology V, V* define
B, (W*) = {U* e V*||[Wh) — U*(v)| < e}
for W*eV*, veV. O
A y

Definition 4.62. X(A) is set of all characters, the set of all continuous functions
f:X(A) > C~ Aforany Ae A 7777 O

é Y
Theorem 4.63 (Gel'fand Isomorphism). An Abelian C* algebra is isomorphic to the

weak *-continuous function € (X) on the character set X = X(A). Norm on € (X) is

giwen by the supremum norm

If1] = sup | F(x)]-

x€X

Furthermore it is an isometry w.r.t. to this norm, i.e. || Al = ||fall- O )

Proof. (1) We define A — f,, via the natural inclusion into the double dual, i.e. fa(x) =

X(A). This is a *~homomorphism, as x is one, e.g.

faB(x) = X(AB) = x(A)x(B) = fa(x)fs(x)-
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This inclusion map is naturally injective, as continuous linear functionals separate

points.

(2) The Gel’fand map preserves the norm as

Holes:

Let A4 be the algebra generated by 1, A, A*, i.e.

[A]l = sup [x(A)] = || f]]
xEX

To see the first equality note that for all states we have per definitionem |y(A)| < || Al

and there exists a pure state such that |w(A)| = [|4].

fa, = f for any polynomial.

This obviouslyholds for polynomials. Thus by the “Weierstrass” theorem: any contin-

uous function on a compact set on X can be arbitrarily well-approximated by polyno-

mials. Compact is taken here w.r.t. *-topology.

Weierstrass theorem.

q.e.

> amn AM(A*)™ and the closure under the norm of the algebra.

Ay is commutative hence it follows that is isomorphic to €' (X 4).

95

The main problem is to prove surjectivity: For any f € €' (X) there exist A; such that

Existence of w such that w(A) = ||A||, GNS construction, compactness and the Stone-

d.

all polynomial expressions of the form

7

G

Definition 4.64 (Representation on A on B(7¢)). A representation 7 of the C*-algebra
A is a *-homomorphism of A into B(77).
If 7 is injective, then the representation is called faithful. Two representation are called

equivalent, if there exists an isomorphism U : 74 — 4 if for all A € A
7T2(A) = U7T1(A)U_1

O

D

.

7

Definition 4.65 (Invariant Subspace). Let V' € S be a subspace of 7. V is called

an invariant subspace of 7(A) iff

VAc AiveV = (A eV

D
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L 0)

é N
Definition 4.66. A vector ¢ € JZ is called cyclic for a representation 7 if

C:={m(A)c|Aec A}

is dense in A7, i.e. C = S7. O
A\ y

[ R
Definition 4.67 (Irreducible Representation). A representation is called irreducible

on of the two equivalent properties holds

(1) The only closed invariant subspaces V' C J# are {0} and 7.

(2) Any vector ¢ € S is cyclic.

4 N
Definition 4.68 (GNS - Construction (Gel'fand, Naimark, Segal)). A C*-algebra A

induces a Hilbert space using a state w.
We define a scalar product A, B € &7 via (A, B) := w(A*B). This hermitean, however,
it is not necessarily strictly positive.

To remedy this define
N = {A € |w(A*A) =0}.

and then the induced scalar product on A/N,, is strictly positive. The completion of
. A/N,, is a Hilbert space. O

.

Remark 4.69. Irreducible representations of a commutative algebra are one-dimensional.
O

(Deﬁnition 4.70 (GNS - Representation). Let B € #;ns with B € A, then define the]
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representation 7 : A — B(H#Gns) via

n(A)B = AB.

97

Remark 4.71. e The GNS representation for a pure state is irreducible.

e For any given representation of A on J#, an element ¢ € 7 defines a pure state
via
wy(A) = (¥, AY)
The corresponding subspace {W(A)z/z ‘ Ae A}, is invariant and isomorphic to the
GNS Hilbert space.
O
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Chapter 5

Self-Adjoint Extensions

Remark 5.1 (Question). Given a symmetric operator A, can we find a self-adjoint
extension B of A., i.e. D(B) D D(A), B‘D(A) =aand B=DB*. Thus AC B=B*C
A*.

It is left as an exercise to show that if A : D(A) — # and B : D(B) — # are
symmetric operators and A C B then B* C A*, i.e.

AcCcBcCB*C A*

Method 1 (Closure) Given A : D(A) — 5 symmetric. Define its closure
A D(A) — A as follows:

Let ||z||4 := ||Az| + ||z|| for all z € D(A)

p(A) = DA™
= {x eH ’ 3(z,), € D(A), (x,), Cauchy w.r.t. ||-|a:2= lim z, in %”} =

n,M—+00

:{xed%”‘fl(xn)nCD(A):||xn—xm||A—>0:x: lim x, in%”}

This is well-defined because A is a symmetric operator. More precisely, if (z,),, is a Cauchy

sequence in || - || 4, then (Az,), and (x,), are Cauchy sequences in 7. Thus we have in J#
n—oo n—oo
Ax, — v, Ty, —— X

99
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Here the limit y = lim Az, is independent of the choice of (z,,),. Indeed if («),), is another
sequence in D(A) such that

/ / MN—0o0

;] N—0oo
Ax, —— vy, T, — T

n n

Then y = y' because for all ¢ € D(a)

(Y, ) = lim (Az,, ) = lim (25, Ap) = (v, Ap) = lim (z,, Ap) = lim (Az),, ) = (', )

n—oo n—oo n—oo

and thus y = 3 as D(A) is dense in 7.

é Y
Definition 5.2. We define the closure of symmetric operator A : D(A) — S to be

the operator defined on D(A) via Az := lim,,_, Ax,, where (z,), C D(A) is a Cauchy

sequence w.r.t. || -||4 and 2, — x in .
. By the above this well-defined for all x € D(A). O

J

Remark 5.3. Often A is already a self-adjoint operator, in which case we are done.
For example let A = —A on D(A) = €°(RY) C # = L*(RY). Then since || - [|a =
| — A+ -] is equivalent to || - ||z we find that

D) = =@ — ZEmEa I — R

and as we have already proven —Au for u € H?(R?) is just the extension of —A on
€>(R%). Since —A on H?(RY) is self-adjoint A is as well. O

é Y
Example 5.4. Let A = —A — m on €>=(R¥) be the Hydrogen atom Hamiltonian.

Then D(A) = H?*(R?) and Au = <—A - m)u for all u € H*(R?).
Here the proof is not triviall For all w € H?(RY), —Au € L? per definitionem and

“ﬁ € L? by the Hardy-Littlewood-Sobolev inequality [Theorem 1.30}

But the inverse is more difficult: Does <—A - ﬁ)u € L? for v € L? imply that
u € H2(R%)?

In particular does —Au — % € L? imply that —Au and % x) c L*?

.
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~
Example 5.5 (Counter Example to Closure Being Self-Adjoint). Let A = —i-< on
D(A) =%€>(0,1) C 2 = L*(0,1).

Then A is symmetric (which can be checked easily via integration by parts). But

D(A) =%=(0,1) " = =0, 1) = HL(0,1) = {u € H'(0,1) | u(0) = u(1)

=0}.
However,
D(Z*> ={ue L?| sup. | (u, Av),, | < 00} = H'(0,1)

vED(A)
llvll 2 <1

where checking the last equality is left as an exercise. Hence A is not self-adjoint.

v

Definition 5.6. If A= A, i.e. D(A) is closed w.r.t. |- |4 = ||A- |+ ], then we call
A a closed operator. O

é Y
Proposition 5.7. Assume that A : D(A) — A is symmetric, A C B and B is closed
and symmetric. Then A C B C A*.

This means that A is the smallest closed extension of A and A* is the largest closed
. extension of A. In particular A* is closed.

S

Proof. Exercise! qg.e.d.

Definition 5.8. Let A : D(A) — J# be a symmetric operator. If A is self-adjoint then

we call A essentially self-adjoint. O

7

\
Theorem 5.9. Let A: D(A) — 2 by symmetric. Then the following are equivalent
(1) A is self-adjoint.

(2) o(A) C R

(3) ran(A +1i) = A
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N\ J

Proof. The first two items are just a reformulation of [I'heorem 4.41| and third follows from

their proof. q.e.d.

In fact we have the even stronger result

[Proposition 5.10. Let A : D(A) — J be a symmetric operator. If o(A) # C, then)

A s closed. O
Proof. Exercise! q.e.d.
( Theorem 5.11. Let A: D(A) — J be symmetric. Then the following are equivalent. )

(1) A is essentially self-adjoint.
(2) ran(A +1i) is dense in H.
A L v

Proof. Easy once one has proven that ran(Z:I: Z) = ran(A £ i) which is left as exercise.

q.e.d.

Method 2 (Kato-Rellich Method) Assume that A : D(A) — 4 is self-adjoint. When
is A+ B : D(A) — J is self-adjoint, if B is a small “perturbation” of A?

é Y
Theorem 5.12 (Kato-Rellich). Let A : D(A) — J be self-adjoint, B : D(A) — &

symmetric. If for some e < 1 and some C.v

|Bz|| < ef|Az|| + Ce|l]]

holds for all x € D(A), we say that € is an A-bound for B, then A+ B is self-adjoint
| on D(A+ B) = D(A), i.e. “small perturbations” do not destroy self-adjointness. [ )

é )
Lemma 5.13. Let A and B be as above. Then for all p > 0, B(A+iu)~" is a bounded

operator and
limsup | B(A £ip) 7! <e

HU—>00
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L where € is the A-bound of B. O] J

Proof. Because A is self-adjoint, iu € p(A) for all g > 0 thus (A 4 iu)~! is a bounded
operator with
(A+ip)™: # — D(A)

thus B(A £ iu)~! is well-defined on J#. We have

B(A+ip)™! B A C
1B £ i = sap SBAE I Bl ¢ ol
z€H ] yen [(Ax i)yl ~ yepy [(ALip)yl
z7#0 y#0 y7#0
A C A C C
oy MGl el G
ven(a) /[ Ayl? + p2lyl? ~ vep(a) max{(|Ayll, pllyl} 7
y7#0 y#0
where the penultimate inequality follows from v/a? + b? > max{|al, |b|}. g.e.d.

Proof of [Theorem 5.13, To show that A + B is self-adjoint in on D(A), we need to prove
that ran(A + B £ iu) = A for some p > 0.

We have A+ B +ip = (1+ B(A+iu) ') (A+in). Here (A +iu)~! is well-defined because
A is self-adjoint. Then

(A+ B+iu)(D(A) = (1+ B(A+ip) ) (A+ip)(D(A) = (1+ B(A+ip) ™) ()

Then this is equal to S if 1 + B(A + iu)~! has an inverse. This holds true when ||B(A +
i) 7| < 1 by [Lemma 4.13] Then we can apply the lemma which in particular states that

C.
HMA+WY“<8+Z<

Since ¢ < 1 for p large enough this is indeed smaller than 1. q.e.d.

Theorem 5.14 (Kato-Rellich for Schrodinger Operators). Consider the operator A =
—A +V on D(A) = H*(RY), where V is some real-valued potential function. This is
self-adjoint if V € LP(RY) + L4(RY) for 2 < p,q < oo, ford =1,2,3. O

Remark 5.15. If f € LP(RY) for some 1 < r < p < oo, then we can write f = f; + fo
with f; € L"(RY) and f, € L=(R?).
Moreover, we can take f; such that ||fi]|zr < 6 for any § > 0.
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This statement can be proven using dominated convergence and its proof is left as an

exercise. ]

Proof. Because V is real valued, A = —A + V is symmetric and we only need to verify that
Vullze < el = Aullzz + Cellul| 2

for some ¢ < 1. In particular this also shows that My : D(A) — 2 is well-defined.
This is equivalent to

Vullze < ellull + Cellul 2

and we shall prove that this holds for all £ > 0.
By assumption we can write V = Vi + V, € L? + L> with ||[V}]|z2 < 0.
By the Sobolev inequality [Theorem 3.23| we have for d = 1,2,3, L>(R?) C H?(R?) and thus

Vullzz < [Viullpe + [[Vaul 2 < Vil zzllulloe + [[Vallz llull 2 < 6Callull 2 ee) + Csllull 2

Choosing Cyé = ¢ yields the result. qg.e.d.

4 Y
Example 5.16. A = —A — L is self-adjoint on D(A) = H%(R?), on L?(R?). This is

||
the case by Kato-Rellich as
1 1 1 p (3 00 /13
= = ei<y = ol elsny € LP(RY) + L2(RY)
|z |z
for any p < 3.
In particular, since for all u € L*(R)3 such that Au = (—Au — ﬁ)u € L? then

u € H*(R?) and —Au, —*&) ¢ L2

||
In fact, A = —A — ﬁ is self-adjoint on D(A) = H*(R?) for all s < 3 by the same
proof.
But A= -A— ﬁ with s > 2 cannot be extended to a self-adjoint operator on H?(R?).

For this the Kato-Rellich theorem is not enough.

v

5.1 Quadratic Forms

Let A : D(A) — S be self-adjoint operator. Assume that A > 1, i.e. that (u, Au) > |Jul?
for all u € D(A).
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Then D(A) is a Hilbert space with ||z||4 = || Az, (z,y) , = (Az, Ay).

é Y
Definition 5.17 (Quadratic From Domain). Let Q(A) = D(A)”'”Q(A), where ||x||22(A) =

(x, Ax) for all z € D(A).
Equivalently

Q(A) = {:1: e A ‘ r = lim z, in # and (z,),, C D(A) is a | - ||g4)-Cauchy sequence.}

n—oo

. DJ

Remark 5.18. Note that this also implies that @, “—— @ in (Q(A), || - [lo(4)). Thus
Q(A) is a Hilbert space with norm || - [|g(a)-
Conversely, Q(A) contains the information of (A, D(A)) in the sense that x € D(A) iff
x € Q(A) and

sup ’(az,y>Q(A)‘ < 00.

yeQ(A)
llyll<1

e Indeed, if 2 € D(A) then for all y € D(A) then (z,y)q4) = (z, Ay) = (Az,y).
By denseness it follows that (z,y)q 4 = (Az,y) for all y € Q(a).

Thus supye(a) <x,y>Q(A)‘ < || Az|| < 0.

lyll<t

o If z € Q(A) and supyeq(a) <:c,y>Q(A)‘ < 00. Then

lyll<t
yr—(T.9)g
is a continuous, linear functional on (Q(A), || - |lg) (trivially from the Schwartz in-
equality), but also a continuous linear functional on (Q(A), | - ||) and by denseness

also on the whole Hilbert space 7#. Thus by the Riesz representation theorem
there exists a unique z € J such that (z,y), = (z,y) for all y € Q(A4) and in
particular also (x, Ay) = (z,y) for all y € D(A). Thus z € D(A*) = D(A) as
A* = A.
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é Y
Example 5.19. Take A = 1— A on L*(R%). D(A) = H2(R?) and Q(A) = HZ(Rd) %@
Lvvhere ulloeay = /(u, (1 — A)u) 2 = |ul| g1 ey, Le. Q(A) = H'(R?). )
é Y

Example 5.20. Take A = M, on L*(Q, u) for a > 1, then
D(A) = {ue L?|au e L*}
Q(A) = {ue L?|Vau e L*}
because
i lullgeay = /. Az = 3/ (u,au) 2 = Va2 )

Remark 5.21. If A is self-adjoint and A > 1 then Q(A) = D(ﬂ) Here VA is

defined via Spectral theorem and functional calculus. It satisfies

VA >0, (\/Z)zzA.

Remark 5.22 (Friedrich Self-Adjoint Extension). Take a symmetric A : D(A) —
with A > 1. Then proceeding as follows

(4, D(A) — () gu @A) =5 (g QUA)) — (4, D(A))

we get a self-adjoint extension Aof A. In general only A C A holds. 0J

Theorem 5.23 (Friedrich’s Extension). Take A : D(A) — 5, A > 1. Define ||u|g =
V (u, Au) for u € D(A) and Q(A) = D(A)”'”Q(A) as above.
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Define Ap : D(Ar) — S as

D(Ar) = §# € Q(4) | sup |{z,y)q| < o0 =
yE
llyll<1

- {x € Q(4) ‘ 3z € Ay € Q(A) : (z,y)g = <Z>y)}

and Apx = z for all x € D(Ap).

Then Ar is a self-adjoint operator and Q(Ar) = @, AF|D(A) =A. O
\ y

Proof. 1) D(A) C D(Ar) because if x € D(A), then for all y € D(A)

<x7y>Q = <AI,y>

and thus by denseness supyeco(a)|(z, y)Q‘ < 00 and therefore z € D(Ap).

lyll<1

In particular, D(Ap) is dense in (7, || - ||») and it is also dense in (Q(A), || - [|¢)-

2) We prove that Ap is a symmetric operator. Take z,y € D(Ap) C Q(A). Then

(Arz,y) = (2,9)g = (v, 2)q = (Ary, ) = (., AFy) .
3) We prove that D(Ar) = D(A}). Assume that o € D(A%}) then

sup [{z, Apy)| < o0
yeD(AF)
Iyl <1

Then by the lemma below x € @ and thus (z, Ary) = (z,y), and therefore

o [t <
yED(AF)

lyll<i

holds. Since D(Ap) is dense in (Q(A), ]| - |lo) we have

sup ’(m,y)Q‘ <oo .. z€D(Ap).
yeQ(A)
lyll<t
Thus D(Ap) is self-adjoint, AF’D(A) = A, ||z|loar) = llzllga) and therefore Q(Ap) =

Q(A). g.e.d.
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(Lemma 5.24. If x € €, and supyep(a)|(x, Ay)| < oo, then x € Q. O )

lyll<t

n—oo

Proof. Because D(A) is dense in 7, there exists a sequence (x,,),, C D(A) such that z,, ——
x in . Then for all y € D(A)

(z, Ay) = lim (2, Ay) = lim (20, 9)q

n

Then for all n € N, y = (2,,y),, is a linear, continuous functional (@, | - [|g) — C and
[Znll = llznle-
The assumption that

sup | lim (z,, Ay)| < oo

yGD(A) n—oo
llyll<1

implies by the uniform boundedness principle that sup,cy ||z, |lo < oo.

Descending to a subsequence we may assume that x, — z in ) by the Banach-Alaoglu

[Theorem 1.20f and therefore also x,, — z in J# and since x,, — z strongly in 7 it follows

that r =z € Q. q.e.d.

Remark 5.25. If A is a bounded from below, i.e. A > —C for some constant C, then

we can define the Friedrichs extension of A by

Ap=(A+C+1),—C—1.

é Y
Example 5.26. Let A = —A — = in L*(R?). If s < 2, then A is self-adjoint on

el

D(A) = H*(R?) by Kato-Rellich. If 3 < s < 2, then

(u, Au) =/|Vu|2—/ |u|(;|2|2d8

is well-defined on H'(R?). Then we can define a self-adjoint operator Ar : D(Ap) —
A = L*(R?) by the Friedrichs extension.
LNote that D(Ar) # H*(R?) but Q(Ar) = HY(R?).
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Remark 5.27. If A : D(A) — J, A > —C then there exist self-adjoint extensions
Anin, Amax such that if B is a self-adjoint extension of A, then

Amin < B < Amax

in the sense that
(U, Aminu) < (u, Bu) < (U, Apaxtt) -

In fact, An.x = Ar and A, is the so-called Krein extension. O
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Chapter 6
Quantum Dynamics

Given A : D(A) — . We want to solve

ilx(t) = Ax(t), fort€R

dt

z(0) = xo
If A is a bounded, self-adjoint operator, then this equation has a unique solution
z(t) = e g

for all zy € 7. Here
, —itA)"
efztA E : ( ¢

|
~ nl
is well-defined, bounded operator, as A is. Since A is self-adjoint e~ is a unitary operator
on A, ie. ||e” ™zl = ||zol|.
é N

Theorem 6.1 (Stone’s Theorem). Let A : D(A) — F be a self-adjoint operator. Then
the equation

idx(t) = Ax(t), fort€R

dt

z(0) = zo

has a unique solution for all xo € D(A). In fact

z(t) = e~z

111
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where e~ is defined via the Spectral theorem. Here the derivative means that for all t
t —x(t
lim 2t +s) — () = Ax(t)
s—0 S
t ly in FC. U
| strongly in )

Proof. 1) Assume that A = M, on 2 = L*(Q, ;1) and D(A) = {« |ax € L?}. Then
z(t)(€) = e " Oay(€) € L2

Moreover, o € D(A) implies that azy € L?, thus also ax(t) € L? and therefore
x(t) € D(A).

The key-point here is that [e="(©)| = 1.

2) Generally, for A : D(A) — S self-adjoint, we have by the Spectral theorem a unitary
operator U : 5 — L*(Q, i) such that UAU* = M,. Then you define

e A = UM iU,

and then z(t) = e~ *xq is well-defined.
3) The differential equation holds as

d ) )
i_e—zta(f) — a(g)e—zta(@

dt
4) Concerning the conservation of the norm note that
eI = 5 (@(0),2(0) = ( Ga(0,2(0)) + (2(0) Fa(0)) =
= (—iAx(t),x(t)) + (z(t), —iAz(t)) =0

Thus ||z(t)|| = [|zo]| for all t € R.
5) Concerning uniqueness assume that z(¢) and y () are two solutions of differential equa-
tion, then z(t) = z(t) — y(¢) solves

iL2(t) = Az(t), forteR

dt

2(0)=0
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then by conservation of norm ||z(¢)|| = [|z(0)]] = 0, i.e. z(t) = y(t) for all ¢ € R.
q.e.d.

é Y
Theorem 6.2 (Stone’s Theorem, Weak Solution). Let A : D(A) — 5 be self-adjoint.
Then the equation

d
z%x(t) = Ax(t)
I(O) =2 € I
has a unique weak solution x(t) € A, i.e. for all p € D(A)
& (iz(t), ) = (a(t), Ap)
x(t) 20 24 strongly in A
Moreover, the unique weak solution is x(t) = e~ "Ax,. O )

Proof. 1) Take x(t) = e *Axy € #. Then z(t) 29 24 strongly as follows from the
Spectral theorem and dominated convergence.

Take ¢ € D(A). We prove that

— (ix(t), o) = (z(t), Ap)
By the Spectral theorem, we can assume that A = M, on L*(, u).

Then the above equation becomes

d

o ie— &0 (€)p(€)dE = /ze e®z0(&)a(§)p(§)dS

which is equivalent to

ita(§) _ Lisa(
lim [ (—i)——
s—t t—s

£)de = / e T @ 0 (€)a(€)p(€)d

This is correct by dominated convergence as for all £ € Q

6ita(§) . eisa(g) y
; — ita(£)
i T dae)e
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and we have the majorant

=900 _ 1 ’ V(Cos((t —5)€)ale) — 1 1 sin((t — s)a(@))?

t—s - S

|t — 5]
< 2]a(6)]

6ita(f) _ eisa(ﬁ)
t—s '

Here p € D(A) implies that a(€)p(€) € L? and thus that z¢(£)a()p(¢) € LY. We

conclude that x(t) = e"*4x, is a weak solution.

Assume that z(¢) is a weak solution. We need to prove that z(t) = e #Ax,. The
difficulty is that

d d

— (a(t), 2(t) = 2R <ax(t),a:(t)> = 2% (iAx(t), z(t))

does not make sense as we only know that z(t) € 7.

Indeed, take any ¢ € D(A), then
i(:c(t) e Moy = (—a(t),e o) + (z(t) ie’“Agp =
dt ’ dt " " dt
= <x(t), iAe_itAgo> + <:v(t), (—z')Ae_”Agp> =0

where we have to justify the first equality. Indeed,

<:l?(t), e—z’tA90> _ <:U(S), e—isA90> _

% (z(t),e ") = lim

s—t t— s
t) — ) —itA,  _ —isA
= lim <—x( ) = 2(s) : e“Agp> + lim <a:(t), S " <‘0> =
s—t t—s s—t t— s

= (a(t),iAe o) + (2(t), (—i)e ") =0
We may conclude that, if z(t) is a weak solution, then for all ¢ € D(A) and all t € R

(x(t), e ") = (0, ©)

Consequently, since e 4z, is another weak solution then

<€_im930> e_itA<P> = (z0, )
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thus for all ¢ € D(A) and all t € R
(z(t) — e ™ ag, e ™p) =0
choosing ¢ = €4, for some @y € D(A) yields that for all gy € D(A)
(z(t) — e ™ ag, o) =0
hence by the denseness of D(A) in
z(t) = e ",

for all t € R.
q.e.d.

Remark 6.3. If z(t) is a weak solution, then ||z(t)|| = ||z for all £ € R. O

é Y
Definition 6.4. A family of unitary operators {U(t)|¢ € R} on Hilbert space J# is

called a strongly continuous one-parameter unitary group if
e U(t+s)=U(t)U(s) =U(s)U(t)
o lim, ,; U(s)z = U(t)z strongly in JZ for all x € JZ.

. DJ

é N
Theorem 6.5 (Stone’s Theorem, Strongly Continuous One-Parameter Unitary Group).

1) If A: D(A) — S is self-adjoint, then U(t) = e for t € R forms a strongly

continuous one-parameter unitary group.

2) If {U(t) ‘ t e R} 15 a strongly continuous one-parameter unitary group, then there
exists a unique self-adjoint operator A : D(A) — € such that U(t) = e 4.
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Moreover,
D(A) = {x eH %in& Ult)e = 2 exists strongly in ,%”}
—
and for all v € D(A)
Az :=ilim M
t—0 t

A is called the infinitesimal generator of {U(t) |t € R}.

\ y

Proof. 1) Trivial by the above!

2) Define the operator A : D(A) — J via

lim Ult)r—x
t—0

D(A) = {xeji”

exists weakly in 77 } =

— {xE%‘HzE%V@E%ﬂ: lim <M,¢> = <z,so>}

t—00 t

and for all x € D(A)
Az :=iw-lim M
t—0 t
Step 1 We prove hat D(A) is dense in 7. For all z € ¢ and f € €>°(R), define
Ty = /f(t)U(t)xdt

R

where ¢ — U(t)z is continuous. We prove that zy € D(A). Indeed,

%Q;Jc = /%f(s)[](s)xds = /f(x) vt + 81 — U(S)xds =

_ [ fs=t) = f(s)
—/ . U(t)xds

Now interchange the limit ¢ — 0 by using the dominated convergence theorem for

Bochner integrals as for all ¢ € R there is some £ € (s — t,t) such that

= |f/(§)| < ||f/||L°° < 00

‘f(s—t)—f(S)
t
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where the last estimate follows from the compact support of f and thus f’. Thus

t) — —t)
lim U( xf = hm/ /(s s)xds = /f s)xds = —x

t—o00 t—0

Thus for all z € 7 and all f € €°(R)

Ut) - 1

t—o00

strongly in . This means that xy € D(A) for all z € J and all f € €>°(R).

Now we need to prove that for all x € J# there exists a sequence (f,,), C €:°(R) such
that xy, 7%, 2 strongly in 2.

Take any f € € with [ f =1 and define f,,(t) = nf(nt). Then

/fn mds—/nf(ns xds—/f ( ) dt =% /f(t)x:x

R R
n*}()o

—

strongly in 7. Thus D(A) is dense in 7. We may again interchange the limit n — oo

and the integral by the dominated convergence theorem for Bochner integrals as

prov ()l =l G)-

which is an integrable majorant.

= [F@Oll]l

We need to prove that A is symmetric. For z,y € D(A) we have by the assumed weak
convergence
B Uut)—1\ . Ut) -1 L U(—t)—1 B
(z, Ay) = 15%< ZTQ> 11_f>%<—27337y *lg% Z_—txay =
= (Az,y)
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Step 3 We need to prove that A is self-adjoint, i.e. D(A*) = D(A). Take z € D(A*), i.e.

Uit) -1
sup |(z,Ay)| <oo .. sup |lim <x,zLy>’ < 00
yeD(A) yeD(A)| 170 t
llyll<1 llylI<1

Since

lim <$’ Zwy> — lim <2M9€, y> — lim <2Mx, y>
t—0 t t—0 —t t—0 t

it follows that

If we define for all y € D(A)

2l = (i7 )

then ., can be extended to be a bounded functional on J# and since lim; .o .%;(y) is

finite it follows that for every y € ¢

sup [.Z;(y)|

teR

is bounded. Note that ||.Z|| < %||z| which is bounded for [t| — oo.

Thus by the uniform bounded principle, sup, ||-Z;|| < C < o, i.e. for all ¢

|| <C

=

Take any sequence t, 2% 0, then the sequence

(U(tzi— 1'75)”

is bounded in 7 and thus by the Banach-Alaoglu [Theorem 1.20| we can assume by

descending to a subsequence that

zeH
tn
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weakly. Here the limit z is independent of the choice of (t,), as for all ¢ € D(A)

(2,0) = lim <%x,gp> _ lim,<ma:go> (o, —iAg)

n—00 n n—oo tn
Then because the limit z is unique we can conclude that

U(t) - 1I t—0,

z

Thus for all z € D(A*) there limit w-lim,_, U(tt)flx exists and thus x € D(A).

Therefore A = A*.

Step 4 We show that U(t) = e 4. We can easily check that U(t)A = AU(t) on D(A). We
know that for all z € D(A) that z%x — Az, thus z(t) = U(t)z is a weak solution
to

iLa(t) = Ax(t)

dt

i.e. for all ¢ € D(A)
- (i (t), o) = (x(t), Ap) -

Thus z(t) = U(t)z and e #2 are two weak solutions thus U(t)xr = e "z for all

x € J by the uniqueness of weak solutions. Hence U(t) = e~ 4

Step 5
t)—1
D(A) = {.T € 7 | w-lim U()—z exists} =
t—0 t
t—0 t

q.e.d.

Remark 6.6. In Mathematical Quantum Mechanics we are generally interested in the
following three questions

e [s A self-adjoint?

e o(A) spectral properties
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e What is the behaviour of e #4 as ¢ — oco. Scattering Theory.



Chapter 7

Bound States

Remark 7.1. Consider the spectrum of the Hydrogen atom Schrodinger operator A =
—A+V(x), V(z)= —%. This potential goes to 0 at infinity and its spectrum consists
of two parts: {)\ € o(A) | A< O} which is discrete, i.e. its is made up of disjoint points,
and {\ € 0(A) | A > 0} which is continuous. O

4 Y
Definition 7.2. Let A: D(A) — S be a self-adjoint operator.

The discrete spectrum is defined to be
Odisc(A) == {)\ €o(A) | A is an eigenvalue with finite multiplicity}.
The essential spectrum is its compliment
Oess(A) 1= 0(A) \ 0aisc(4).

A € 0ess(A) iff A is not an eigenvalue or it has infinite multiplicity.

. y

Remark 7.3. Recall that X is an eigenvalue of A iff there exists a non-zero vector in
D(A) such that

Av = .

121
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4 N
Theorem 7.4 (Weyl Sequences). Let A : D(A) — S be a self-adjoint operator and

A€ C. Then

1) X € o(A) iff there exists a of unit-vectors sequence (uy), C D(A) such that

n—oo

1A = Aun[| —= 0

The sequence (uy,),, is called a singular sequence, or Weyl sequence for .

2) X € 04isc(A) iff X € 0(A) and any Weyl sequence (uy,), for A is pre-compact, i.e.

it contains a subsequence (un, ), converging strongly in .

3) X € 055(A) iff there exists a Weyl sequence (u,), converging weakly to 0 in J€

or equivalently iff there exists an orthonormal Weyl sequence (u,),, for .

. DJ

Proof. By the spectral theorem we may assume w.l.o.g. that A = M, on L*(Q,u) and

o(A) = essran(a).

1) Let A € 0(A). We have to find a Weyl sequence (u,),, i.e. a sequence of function

n—0o0

satisfying ||un||z2 = 1, ||au,||z2 < oo and ||(a — Nu,|| — 0, i.e.

hm/m AP () Pu(E) = 0.

By assumption we have A € 0(A) = essran(a), i.e. for all ¢ > 0

n({&]la€) = A <&}) > 0.

We choose 1
{la©)-A<%}

T u({Ja© =N < 1Y)

for which ||u,||,2 = 1 holds. Then

2
/m )= APlan@F ) < [ Shun@Fdnte) = L2tz = L 22

n? n?
Q

Conversely, assume that there exists a Weyl sequence (u,), for A. We have to prove
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that A\ € 0(A) = essran(a). Assume that A ¢ essran(a) then there exists a € > 0 such
that
p({la = A <e}) =0.

Then |a(§) — A| > ¢ for almost every £ € Q. It follows that

0 & / a(€) — APlun(€)2du(€) / () ()

where the leftmost convergence from the fact that (uy,), is a Weyl sequence. This is a

contradiction. #

Assume that X\ € 04isc(A) and let (u,), be a Weyl sequence for \. We have to prove
that (u,),, is pre-compact. By the lemma below it follows from A € 0gisc(A) that there

exists an € > 0 such that

pla (A=A +e)\{A}) =

Then since (u,),, is Weyl sequence

e /,a P = [ v [ [ m@rae

thus

It therefore suffices to show that

(Lo-1yun(8)),

is pre-compact in L?. However, as A € ogic(A) iff A is an eigenvalue of M, with
finite multiplicity which in turn is equivalent to 1a—1(,\)L2 being a non-empty, finite-

dimensional subspace of L*(£2, ).

Thus since (u,),, is bounded, (15-1un (€ ))n is a bounded subset of a finite-dimensional

Hilbert space and is thus pre-compact.
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Note here that u is an eigenfunction of M, with eigenvalue of A, iff

My =M <= a(&u(l) = \u(§) for ae. £ <—
< a(§) = A for a.e. £ €supp(u) =
<= u is supported on a ' ()\) <=

<~ u€ 1,171(,\)L2(Q, 1) the eigenspace of M, with eigenvalue \.

Conversely, assume that A € 0(A) and that for every Weyl sequence (u,,),,, there exists

a subsequence converging strongly. We have to prove that A\ € ogis.(A).

We shall fist prove that A is an isolated point in o(A) = essran(a). Assume that X is
not an isolated point. The for all € > 0

pla ' (A=, x+e)\ {A}) > 0.

Choose a positive, monotonously decreasing sequence (g,,), converging to 0 such that

the following sequence of sets have positive measure

By = (a7 (A = em A — £031) U A+ €01, A+ 2)))

Define u,, := %, then (u,), is a Weyl sequence, as ||u,||z2 = 1, and

109 = APlun@ante) < [ hua©lante) = 2 = 0.

Q Q

But (u,),, is an orthonormal family because supp w, N supp u, = 0 if n # m. Thus
Up “22 0 weakly. Thus u, cannot have any strongly convergent subsequence since

any possible limit would need to have norm 1 which is a contradiction to the above. #

If ) is an isolated point of essran(a) then a~'()\) has to have positive measure (why?).

Thus A is an eigenvalue with eigenvector

Moreover, the eigenspace of A has to finite-dimension, for otherwise we could choose
an infinite sequence (u,,), of orthonormal vectors within it. This would form a Weyl

sequence weakly converging to zero contradicting its pre-compactness.
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3) Let A € 0es(A). We need to find a Weyl sequence (uy,),, that is an orthonormal family.

If \ possesses an infinite-dimensional eigenspace, then we can choose an orthonormal

basis (u,), of that eigenspace which would also be a Weyl sequence.

If A is not an isolated point in essran(a), then for all ¢ > 0

p(a‘l(()\ —g, A +e)\ {)\})) >0

Then we can define a Weyl sequence (u,), as above, with supp u, N supp u,, = 0 for
n # m thus forming an orthonormal basis.

Conversely, if there exists a Weyl sequence (u,,),,, such that w, SN weakly. Then

A ¢ 0gisc(A) and thus A € ges(A).

qg.e.d.

Lemma 7.5. A € 045.(A) implies that X is an isolated point in the spectrum of A, i.e.

there exists an € > 0 such that

,u(a_l(()\ —gA+¢e)\ {/\})) =0

7.1 Weyl Theory

é Y
Definition 7.6. Let A : D(A) — S be a self-adjoint operator and B : D(A) —

. We say that B is A-relatively compact iff B(A + i)~! is a compact operator on

J€, or equivalently for every bounded sequence (u,), in (D(A), || - |la), there exists a

subsequence (u,, ), such that Bu,, converges strongly in J# (why?). O
N Y

é N
Theorem 7.7 (Weyl). Let A: D(A) — S be a self-adjoint operator and B : D(A) —

FC symmetric and A-relatively compact. Then

1) B is A-relatively bounded with arbitrarily small bound ¢, i.e. for all € > 0, there
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exists a constant C. such that for all u € D(A)

[Bull < el Aull + Cc|lul]

Consequently, A + B is self-adjoint on D(A) by the Kato-Rellich|Theorem 5.12,

2) Oess(A+ B) = 0es5(A).

Proof. 1) We shall prove this by showing that for any ¢ > 0
lim ||[B(A+ip) | <e
HU—00
or equivalently
lim ||[B(A+ip)~'|| =0
H—00
For pp > 0 write

B(A+ip)t =B(A+i)" (A+i)(A+ip)”

- - 7

~
compact bounded

The result now directly follows from the lemma below.

2) Let A € o(A) then there exists a Weyl sequence of unit vectors (u,), C D(A), such
that (A — A)u, 2= 0 and u,, “—> 0. Then to prove that (u,) is a Weyl sequence
for A+ B it suffices to show that Bu, —— 0 strongly in JZ.

To see this note that

Bu, = B(A+i) (A= A+ A+ i)uy = B(A+1) " (A= Nug + (A +i)u, ) =20
N N " \‘,—/

N~ —~

n—oo n—o0

compact 0 \0

strongly.

The converse follows by replacing A with A + B and B with —B as B, and thus —B
are relatively A + B-compact. To see this note that

BA+B+i) " =B((1+BA+i)")(A+i) " =BA+i) ' (1+BA+i))"

compact
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The rightmost operator is bounded. To see this note that as B(A +4)~! is compact
B(A+1) Z An |Un) (Un] -

Then 1+ B(A +i)~! has a bounded inverse iff there is an open neighbourhood of —1
not disjoint from (JA,),. This is the case since —1 € p(B(A +4)~'). Suppose that
—1 € o(B(A+1i)™!) then it must be an eigenvalue and therefore there must exist some
u € S such that

B(A+i)'u=—u <= Bv=—(A+i)v <= (A+B)v=—iv

where v € D(A) such that (A + ¢)v = u, which exists since A is self-adjoint. Now the
rightmost equality is a contradiction since A + B is self-adjoint.

q.e.d.

4 N
Lemma 7.8. (i) Let A be a self-adjoint operator. Then for all u € F

lim [|(A+ ) (A +ip) 'ul| = 0.

p—+00

(ii) Let B be a compact operator, and (A,), a sequence of bounded operator such that

for allu € A, || Apu|| == 0, then ||BA,| === 0.

A U Yy
Proof. Exercise! q.e.d.
[ )

Example 7.9. Let V : R? — R be a potential with V € L*(R9) + LP(R?), 2 < p < oo.
Then V' (—A)-relatively compact (Exercise!), and thus

O'ess<_A + V) = Uess(_A) = [07 OO)

For example this holds for V(x) = _|71\ in R3.
L S
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7.2 Bound States

Definition 7.10. Let A be a self-adjoint operator. If u is an eigenfunction of A with

eigenvalue A outside the essential spectrum, then w is called a bound state. U

We shall now investigate two questions concerning bound states:

1) How many bound states are there?

2) What are the basic properties of bound states.

4 Y
Theorem 7.11 (Min-Max Principle). Let A : D(A) — S be a self-adjoint operator

and bound from below. Define the n'* min-maz value or singular value for n € N to be

= inf max (u, Au
Hn MCD(A) ueM )
dim M=n [[u]|=1

1) py, is increasing, i.e. py < po < -+ with py, MERESN Lo Where pis = Inf g.s5(A).

2) If fin < oo, then pi, is the n'® lowest eigenvalue of A.

\ y

Proof. Look at
pr = inf (u, Au) =info(A) € o(A)

ueD(A)
[Juf|=1

There are two possibilities.

1) If 41 = oo, we need to prove that pie = inf oes(A). We know that
foo = p11 = Inf o (A) < inf 0egs(A)

S0 it is enough to prove that fio, € Tess(A).
2) If p1 < fioo, we need to prove that uy is an eigenvalue.

Then we proceed by an induction argument: Split H = W & WL, W = span{u;}, where
Auy = pug then A: W — W and thus A : W+ — W+, Thus we consider A!WL instead for

which we have

Hn (A|WL) = Mn+1 (A)
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Let us check the details. By the spectral theorem, we may assume w.l.o.g. that A = M, on
L*(Q,v). Consider
pr = inf (u, Au) = info(A).

[[ul| =1

e If 4y is an isolated point of o(A) or if v(a™'(u;1)) > 0, then y; is an eigenvalue of A (the
proof of this is similar to that of Weyl theory) and we can proceed by the induction

argument.

If p1 has infinite multiplicity then trivially u, = p; for all n € N,

e If y; is not an isolated point of o(A), and v(a™!(u1)) = 0 (i.e. py € Tess(A)) then we
have j17 = pioo. Indeed, we will prove that u,, = u, for all n € N.

Since py € 0(A) we have for all € > 0
v(a '( — e, +€)) >0
but for any positive, monotonous zero sequence (5n)n

lim v(a™ (11 — €n, i1 +€0)) = v(a " (p1)) =0

n—oo

Furthermore, we can choose the sequence in such a way that

v(a™ (1 — n, i+ €0)) > v(a” (11 — Engr, 1 + Eng))

Then define ¢,, = 1‘(2;2 ) where

Q= a (1 — €n i1 +80) \ (11 — Enyr, 1 + Enyr))

which is an orthonormal family in L?(Q2). Define M, , := span{@m, @m+1; - - - s Pmin—1),
dim M, , = n. Then for all u € M,, with |ju]| =1

(u, Au) = / d©O©ldE) < max (o Apy) < 1+ em

k=m,....m+n—1
Q

Thus for all m € N

,un(A) g H]}?X <U7Au> g 251 +Em
ueMm,n
[[ull=1
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taking m to infinity we thus find that
ﬂn(A) <

which proves the claim that p; = p and together with the case of an eigenfunction

of infinite multiplicity, then if 1y € 0egs(a) then po, = inf o5 (A) and pio, = Inf oo (A).

g.e.d.

Remark 7.12.1) (Max-Min Principle) We also have

pa(A) = sup inf (u, Au).
M, _1CD(A)8 uLMn—1
dim My, _1=n—1 [[ul=1

In particular if 4 ..., p,—1 are eigenvalues with eigenfunctions w, ..., u,_1 then
A) = inf u, Au
Mn( ) ul{ui,...,un—1} < ’ >
flul=1

2) pn(A) is determined by the quadratic form of A, i.e.

A= i
fin(A) ymf | masx Q(u)
dim M=n [lul|=1

where Q(u) = (u, Au) if u € D(A). If B is a symmetric operator bounded from below

let Br be its Friedrichs extension then
fin(B) = pin(Br).
3) The mapping A — p,(A) is monotone
A>2B = (A > u(B).

and thus for B > 0
tn(A+ B) = pn(A).
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é Y
Theorem 7.13. Consider A = —A +V on L*(R3) with V € L* + LP, co > p > 2.

Then A is self-adjoint on D(A) = H? and 0.s5(A) = [0, 00).

1) If V(z) < —# for |z| large enough and 0 < a < 2, then A infinitely many

negative eigenvalues.

2) If V(z) > —# for |x| large and a > 2, then A has finitely many negative

ergenvalues.

Sketch of Proof. 1) From the min-max principle, we need to show that u,(A) < 0 =
inf 0ess(A) = poo for all n > 1. We have to find an orthonormal family (¢,), with
disjoint support such that (p,, Ap,) < 0 for all n > 1.

2) Again by the min-max principle we have to prove that fro some p,(A) > 0 for n large

enough. Note that

A A A
A=-A+V = 5 + V1g<r + (—5) +V1>r 2 D) +V1g<r =B

N——
N—— >_ 1

S 4 Z 7 Tal

~ 8lz|?

for R large enough since a > 2. So u,(A) > p,(B) and it suffice to prove that
tn(B) = 0 if n is large. This step allows us to assume that V' has compact support.
Assume that B infinitely many eigenvalues below 0, i.e. there exists an orthonormal

family (u,), of eigenfunctions such that
1
—iAun + Vu, = ppuy,

We can check that wu, is bound in H?(R3) thus by the Sobolev embedding theorem
Up ——25 u strongly in Lys.. On the other hand, (u,), is an orthonormal family and

oo
loc*

thus weakly converges to 0 in L?. Hence u, — 0 in L
Vu, — 0 strongly in L? because V € L? and V has compact support. Thus

n—o0

—Auy, = —Vu, + ppt, —— 0
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strongly in L?. However, (—A — u,)u, = —Vu, hence ||u,|| = 1 and

Uy = — (—A — 1) = (=A) "V,
— 7

which is a contradiction (why?).

Another way of seeing this is by proving that
VIVIun = =sen(V)VIVI=A = ) 7V IVIVIVI

where \/|V|(=A — p,)"'/|V] is a compact operator.
g.e.d.

Theorem 7.14 (Schrédinger Operator with Trapping Potential). Consider A = —A + )
V oon L3(R3), V € Ll(/)i, V(z) = o0 as |x| = oo. Then: A is bounded from below and
can be extended to be a self-adjoint operator by Friedrichs extension. Moreover, A has
a compact resolvent, i.e. (A + 2)7! is compact for all z € p(A).

Consequently, there exists an orthonormal basis (u,), and p, T oo such that Au, =

. L Uy - ]

.

Proof. By the min-max principle we need to show that u, 1 oo. Assume by contradiction
that u, AEEN foo < 00. Thus pin, € 0ess(A). Consequently there exists a singular Weyl

sequence (), of orthonormal vectors, converging weakly to 0, such that
I(A = proc)nllz == 0

Then we can show that ¢, is bounded in H' and thus by descending to a subsequence we
have that ¢, — 0 in L (R3) for p < 6.

loc
Then

(oms Ap) = / Vel + / Vgl > / Vipal? = / Vigal? + / Vipal?

lz|<R lz|>R

and
/ V0|en|? = 1nf V(zx / lon|> — +oo

| =

|z[>R N——z|>R
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as n — oo and then R — oo.
Thus (¢, Ap,) “=5 0. But this contradicts (¢,, Apy) b fieo < 00.
qg.e.d.

é Y
Theorem 7.15 (Exponential Decay of Bound States). Consider A = —A + V' with
V e L*(R3) + LP(R3) and 2 < p < co. Assume that V(x) — oo as |z| — oo.

If u is an eigenfunction of A with eigenvalue E < 0, then

/|u(:c)|262a|m|dx < 00
R3

for all 0 < a < +/|E]|. O
A y
Lemma 7.16 (IMS Localisation). If ¢ : R — R is smooth, then as quadratic forms

" () + (~A)¢?
P*(—A) + (A
5 = p(=A)p — |Vo|*.
Consequently, if (v;), with
> o=l
iel
then
—A =) 0D = > _ |Vl
iel i
i.e.
[ivu =% [1vewr -3 [1verie
iel i
q 2>
Proof. This follows from a simple integration by parts. q.e.d.

Proof of Theorem. Let —Au + Vu = Eu. Then for a real-valued, smooth ¢
(P*u,(~A+V — E)u) =0

Thus

< @2(—A+V—E)+(—A+V—E)902>
u, 5 u) =0
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By IMS localisation

/ V(eu)P + / Vlu? - E / Sl - / Vol2luf = 0

Since V(x) — oo as |z| = oo, if supp ¢ C {|z| > R} with R large, then
[ve| <e [

[1veur = @-o) [

To conclude we need to show ¢ appropriately

0= / V()P + / Vi lul? —E / Slul - / Vellup
A ;?) _/ _/

-~
2—¢ [ p?|ul?

for € > 0 small. Thus

thus

(81 -2) [ ¢l < [ (96l

A good choice of ¢ is supp p C {|z| > R} for R large and |Vy| ~ ¢. Thus we can choose
¢ = el on |z| > R for some function f such that |V f| < k and f ~ k|z| where k < \/|E| — ¢

This tells us that
/ e2fu? < .

4 Y
Theorem 7.17 (CLR - Cwikel-Lich-Rozenblum). Ifd > 3, V € L2(R%), then

q.e.d.

|{negative eigenvalues of — A+ V}| < C/ |V_|g
R4

for a universal constant C' that only depends on the dimension, and

-V, ifV <0
0, fV =0
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Remark 7.18. 1) Semi-Classical Analysis: We have the approximate principle that
one quantum bound state of —A+V e  one unit volume in phase space in R%xR?

in particular

[S]ISW

dim 1(_aqvy<o & //1{27Tk|2+V(x)<0}dkdx = Ccl/V_
Rd

Rd R4

Note that {|27k[* + V(x) < 0} is the region in phase space where the particular
has energy less than 0.

2) The assumption d > 3 is cruciall If d = 1,2 and if V < 0,V # 0, then —A +V
has at least one negative eigenvalue (exercise!).

O

Proof. Let

W = span{eigenfunctions of — A + V' with negative eigenvalue} = ran1{_a;v<oy-

[NIISW

We have to prove that dim W < C' [ V2. Assume that dim W > N, then dim(v—AW) > N

(why?).

Then there exists an orthonormal family (v —Auj)j in LA(R?), ie. (vV=Auj,vV—Auy) = b
and u; € W.

Then per assumption for all j =1,..., N
<Uj, (—A + V)U]> < 0

since u; € W. Thus
1 +/V|uj12 <0

and therefore taking the sum over j yields

N+/V,0<O
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where
N

pla) =) lu;(2)*

j=1
It follows that
N < - / Vo< Vop

On the other hand:
N N ) N o0 )
N =3 (u, —Auy) = Z/\zww\aj(m i Z//h,%%e}mj(k)\ dedk —
j=1 =17, =15 %

Define uj via its Fourier transform

7;5(@ - 1|27rk\2>eaj(k)

then
N o N % N %
N:Z//|u’\j(k)\2dedk22//|u’j(k)} dedk:Z//{uj(m dedk =
jled 0 Jj=1 0 Rd Jj=1 0 Rd
N oo
:Z//W;(k)\ dedk
jled 0

where the exchange of integrations is allowed by Tonelli’s theorem as the integrand is always

positive.

By the triangle inequality

> lus ()2 > J > fus()P J > lus(a) - u(a) P

and thus

S @) > [Vh— | D lue) — us@)l
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Note that
N N 2 N 2
Z lu;(z) — uj(a:)|2 = Z /e%zk'muj —u§(k)dk| = Z /e%mml{mkpge}ﬂj(k)dk: =
j=1 j=1 J=1

2

[
WE

o1 2
2rik-z —{27k[*<e} ~
————2mk|u;(k)dk| <
7j=1 ”/me ’2ﬂkﬂ ‘ " ‘uj< )
ZN Lippnippcey |
< 2mik-x 2mk[?<e dk = K 5—1‘
S p /6 |27Tk" d€é?

where the inequality follows from Bessel’s inequality as the |27k|t;(k) form an orthonormal
family in L?(R9).

Thus
2

Sl > Vo - Kt

+

and therefore
° 2
N > //[\/p(x) — \/Kdeg_l} dedr = IN(e/p(a:)dd‘zd:I;
+
Re 0 Rd

To conclude we now use Holder’s inequality to see that

e froe ()

d—2 a—2

(Jr) () (&)

NSCd/V_

[SUIN

and therefore

(V]IS

d
and thus also dim W < Cy f V2 since either there exists some N € N such that dimW = N
or dim W = oo and thus the above inequality holds for all N € N and therefore also

Cd/ngoo.

qg.e.d.
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Symmetries

é Y
Definition 7.19 (Strongly Continuous One-Parameter Unitary Group). A family of

operators {U(t) |t € R} such that for all t;,¢, € R

Ut)Ul(tz) = U(ts + t2)

n—o0

and for (¢,), CR, t, —teR

Ult,) == U(t).

S

A L y
( Theorem 7.20. Let A be a self-adjoint operator and U(t) = exp(—itA). Then )
(1) U(t) is a strongly continuous unitary group.
(2) The limit for all v € D(A)
lim (U/(¢)9p — 1) = —iAe.
t—0 ¢
(3) D(A) is left invariant under U(t), i.e. U(t)D(A) C D(A).
A\ L y

4 N
Theorem 7.21 (Stone). Let U(t) be a strongly continuous one-parameter unitary

group. Then there exists the operator A on

D(A) = {w € A | %%(U(tw — ) e:m'sts}

139
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defined via
Ay =1 (U0 ~ ).

. is self-adjoint. In particular U(t) = exp(—itA). O )
é R Y
Definition 7.22 (Symmetry Transformation). Amap T : & — A, T : L(H, ) —
L (A, ) (a map from a suitable class of linear operators of the Hilbert space to itself)

such that for all ¢ € 5 and all suitable operators A € L (, )
(T, T(ATY) = (b, A¢)
If A=)"_la)(a|, then if o’ = Ta and A’ = TA we
Z T |a) T* {a| = Z la’) (
and the symmetry condition translates to
!
(T, a') (o', TY) = [ {a, TY) |* — | {a, ) |
for all v € 2. O
A V.
é N
Theorem 7.23 (Wigner). Let T' be a bounded linear operator on F such that for all
u,v € I
| (W', v} | = | {u, 0) |
then T has the form Tu = ¢(u)Vu where ¢ : ' — S* C C is some phase factor and
V' is either unitary or anti-unitary, i.e.
(Vu, Vo) = (v,u) .
N L Y

Proof. Let (e;); be an orthonormal basis of 7, and define €} = Te;.

For j > 2 define f; = e; + ¢;, the per our assumption

| (ea fi) | = I{en, fi) | = 1, (€5 fi) | = 1 {eg, fi) | = O
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thus f; = z;€| + y;e; with [z = |y;[ = 1.
Redefine T such that P

o J G
Zj L

then ]7]’ = ¢} + €. We shall now drop the tilde and simply consider T as the transition form
T to T is simply a multiplication with a unitary operator.
Now let Tu = ), ale;. Then

|af] = | (e}, u') | = | (ej,u) | = |a,]
and
lay +a;| = | {e1 +ej,u) | = | (e + €}, u') | = |a} + df]

which implies
la1]® + 2R @ya; + |a;* = |a)])* + 29%671@; + |0L;-|2 <— Raja; = i)%a_’la;»

If ¥ and ¥’ are the phases of aja; and a_’la; respectively, then this implies that cos(¢) = cos(¢)
since the norms of @ja; and a_’la; are equal by the above.

Therefore ¥ = £¢'. If J = ¥ then we can redefine T" such that o] = a; and if ¥ = —¢'
such that a] = @;. In the first case this means that the symmetry is 7" is unitary and in the

second anti-unitary. q.e.d.

Remark 7.24. A symmetry continuous connected to the identity must always be uni-

tary by connectedness. 0

é N
Definition 7.25. A density matrix p is a positive operator on the Hilbert space 7 of

trace 1. This means that there exists an orthonormal basis (u;), of 5 such that
p=> pilw)(ul, Y p=1
i i

p; can be interpreted as the probability that a particle described by p is in the state

|ui).

\ DJ
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Remark 7.26. p is the most general form of a “state” (as introduced with C*-algebras)

together with normality. 0

4 N
Definition 7.27. The (von Neumann) entropy of p is defined to be

S(p) = —Tr(plog(p)) = — sz‘ log ;.

Remark 7.28. Entropy is a measure for the “fuzzyness” of our knowledge of the state

of a particle described by p. If p is a pure state, i.e. p = |u) (u|, then S(p) = 0. O

The time-evolution of p is given by

p(t) = U()pU1)".

7.3 Argument for Unitary Evolution

Suppose that we have some general time evolution v(t), u(t) for some initial states w,v. Then

the density matrix
1

1
p=5 ) ful + 5 10) (o

would generically evolve as

pt) lu(t)) (u®)] + 5 o(0)) o)

Then for ¢ (t) = c,u(t) + c,v(t) the density matrix would be

w=< ! ;w@w@v
5 (0(0), u(t)) 3

Suppose that (u,v) = 0 but for some ¢t > 0 (u(t),v(t)) # 0. Then

S(p(0)) =log(2),  S(p(t)) = wy log(wy) + w- log(w-)
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where wy = (1 £ (u,v)|). Then since S(p(0)) is maximal entropy would decrease.

This gives one argument for why time evolution must behave as a symmetry and thus be

unitary.

7.4 'Trace Out of Density Matrix

Suppose that 77 = 5 ® 74 and suppose that only make an observation on .75, i.e. our

observable decomposes as A = Ag ® . Then for a state
= Z VDipis ® Tip.
we have

<¢p7 Awp Z v/ PiPj 9017 ASOJ i, ]Ix] Z Di @27 AQOZ Tl"(pA)

52]

where p =Y. p; [¢i) (@il.
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Chapter 8
Scattering Theory

Let us start with u(t) = e"#ug, where A = —A + V on L?(R?). We are interested in the
asymptotic behaviour of u(t) as t — +o0.

e If 4y is a bound state, then u(t) remains localised as t — 4o0.

e If ug is orthogonal to all bound states, then u(t) escapes to infinity as ¢t — 4o0.

,
Theorem 8.1. Let A be a self-adjoint operator on L*(R?) and u(t) = e "uy with

uy € span{ eigenfunctions of A}.
Then for all € > 0 there exists a R = R. such that

in / |u(t,a:)|2dx>/|u0(x)|2dx—e.
]Rd

teR
lz|<R
Note that
[tz = [ fuofe)P?
R R
thus
sup / lu(t, z)*dr < e.
teR
|z|>R
A L y
Proof. Exercise! q.e.d.

145
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Next we show that if ug is orthogonal to all eigenfunctions of A, then u(t) = e~#4u, escapes

lim
t—+oo

to infinity in the sense that for all R > 0
[ utt.oppas =0

lz|<R

which is a particular case of the so-called RAGE theorem.
Our goal in studying scattering theory is as follows: if A = —A+V, V — 0 as |z| - o0

then for uy orthogonal to the bounds states there exist some vy € L*(R?) such that

1tAu0 o eztA,U[:)I:HL2 =0.

lim He‘
t—+oo
4 Y
Theorem 8.2 (RAGE for the free Schrodinger Operator). For all f € L*(R?), then
forall R >0
/ ‘(e’tAf)(:U)‘Qda? t—=+oo 0
|z|<R
S O

-
Lemma 8.3. If f € L'(R?) N L2(R?), then
1 o=yl
/ e’ f(y)dy

() @) = (4mit)®

e. v € R4,
Lforae x

Remark 8.4. Recall the heat kernel
() (@) = — / e Fly)dy
(4rt)

Proof. For all ¢ > 0 and
(6 ) () = s )
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where
1 __lz?
e 4(it+e)

Glr)= ——
(@) (4 (it +¢))2
by the formula for the Fourier transform of a Gaussian. Thus

(it+e)A — 1 _%
(e f)(@) (47r(z't+e))3R[e @59 f(y)dy

for all € > 0. The left-hand side converges to e”® f as € | 0 since e~ (#)% is bounded for all
£ > 0 and converges pointwise and thus e(®*+9)2 converges strongly by functional calculus.
The right-hand side on the other hand also converges pointwise and is dominated by | f(y)| €

L' and therefore by dominated convergence

("2 f)(z) = ! g/eﬁf(y)dy-

(4mit) 2
g.e.d.
Consequently if f € L'(R?) N L?*(R?), then
(@) = | —— /eilztyzf(y)dy < ——|fll

(4mit)2 2, (4rt])=
for a.e. x and thus

||ez‘tAf|| < Hle t—oo 0

(4rlt])?

and for all R >0
[ I far < e Bao)] == 0

lzll<R

Proof of [Theorem 8.2 1f f € L' N L? we are done by the above. Now take any f € L*(R%).
We claim that for all € > 0 there exist f; € L' N L? and f, € L? such that f = f; + f, and

I fallz2 <e.
Indeed, if we take f; = flg>xy then

IS

2 2
/|f1|:/|f|1{|f|>/\}</T—T”<OO
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and fy = flyr<xy Where
A—0
Ifall = [ 1L 2 0

by dominated convergence. We can also take f; = fly<zy which is L' N L* as {|z| < L}
has finite measure and for a set of finite measure LP C L? for p > q. Then fy = fl{.>1)

which also converges to 0 as L — oo.

Thus
/ |€itAf($)’2dx: / |€itAf1(z,) ztAf / }eltAf ‘ dr +2 / ‘eztAf
|z|<R lz|<R |z|<R |z|<R
2 / ‘eitAfl(ZE)‘Qd:B 4 2¢?
lz|[<R

and therefore
lim sup / ’eimf(x)fdx < 262 =0,

t—=+o0
[z|<R
q.e.d.
8.1 General RAGE
Let A be a self-adjoint operator on 7.
é N
Theorem 8.5. For uy € D(A) orthogonal to all eigenfunctions of A
A, zEee |
ergodic
weakly in . Equivalently, for all compact operators K, Ke®*u, % 0 strongly in
ergodic
FC, i.e.
= itA
Jim = / et ulf =
N U Y

Remark 8.6 (Spectral Decomposition).

%:%p@%c@%c



8.1. GENERAL RAGE 149

which is the quantum version of the Lebesgue decomposition of a measure

M= Hpp t+ Hac T [sc

where 11 — ppp does not have any support on single points, du,. = gdx for some g €
LY(R?) and pg. is singular to the Lebesgue measure.

Which however, only consider the simpler decomposition

¢, = span{eigenfunctions of A}

point spectrum and 72, = %?,L. O

é N
Theorem 8.7 (Ruelle). Let A be a self-adjoint operator on . Then for all uy €

and all K compact operators

T
1 ] 00
= / | K et |2dt T222 0
0

Remark 8.8. If K is a compact operator on a Hilbert space, then we can write K as
K=\ lun) (v
n=1
where (uy),,, (v,), are orthonormal bases. By definition K is trace-class if
Tr K| =) || < 0.

where |K| = VK*K. In this case

Tr K = Z <90naK90n>

n=1

for any orthonormal basis (¢,), (Exercise!).



150 CHAPTER 8. SCATTERING THEORY

By definition, K is Hilbert-Schmidt if

1K [[fs = ZM [? < co.

In this case

1K s = ZHK%H2

for any orthonormal basis (¢,,),,.

In fact we have
B(A) D compact operators O Hilbert-Schmidt operators o O Trace-Class operators o

or equivalently
K| < ||K|jus < Tr|K|=TrvEK*K

If K is compact and K = >\, |uy,) (v,] then

K| =sup Al (1Kl = /D Aal? TrlK] =) A

In particular, if K is Hilbert-Schmidt then K*K is trace class. In fact, o2 is a Hilbert
space with inner product
(Ky, Ka)yg = Tr(K7K)

if K, Ky are Hilbert-Schmidt.
In fact one can relate that any Hilbert-Schmidt operator K to an L? integral kernel.
Recall that the kernel K (x,y) of an operator K on L*(Q) is defined via

~ [ Kw o)y
0
for all f € L*(Q) and a.e. z € Q.

Then an operator K is Hilbert-Schmidt on L*(Q2) iff K(z,y) € L*(2x Q) and || K||gs =

K () |2 @xe)-
This proven by using K = >\, |u,) (v,| and accordingly defining

T,y) = Z )‘nun(x)m
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Proof.

Step 1 Consider the sequence of operators

T
1 ) )
Mr = / e~ ug) (e Aug| dt
T
0
Then My > 0 and
T T
1 . . 1
Tr MT = —/TI'(|6_ZtAU0> <€_ZtAUO|)dt = — / 1dt =1
T T
0 0

Thus (Mr), is a bounded set of trace-class operators. Thus (Mr); is bounded in the
Hilbert-Schmidt norm, and o2 is a Hilbert space. By the Banach-Alaoglu[Theorem 1.20)

there exists a sequence T, 7% and M, € 02 such that
My, noo M,

weakly in the Hilbert-Schmidt space, i.e. for all Hilbert-Schmidt operators D

lim Tr[Mr, D] = Tr[M., D]

n—oo

Step 2 We prove that M., = 0. We first show that

e MM e = My,
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for all £ € R. We have for all T' € [0, c0)
T
e—ztAMTeztA — e—ztA ? / |€—13Au0> <€—zsAu0| ds 6ztA —
0

T
1 —1 s —1 s
T / |7 ug) (e | ds =
0

T+t

1 —1s —1is
:f/]e Aug) (e Mg ds =
t
T

1 t T+t
T
0 0 T
t

T+
1 ) )
= M+ ? /‘l‘ / |6_ZSAU()> <6_ZSAUO| ds =
0 T

However,

t T+

, . 1 , , 1 oo
Trle A Mre™* — My| < T /+ / Tr le " Aug) <e_ZSAu0lds = ?2t =20
o T ]

1

On the other hand, My — M., thus e A Mped — My — e #AM e — M, weakly
in the Hilbert-Schmidt space. Thus e~ 4 M_ e M.

Taking the t-derivative we find

d ) ) ) )
0= E(6711‘/14]\/[OoeztA) — _,iefztA(AMoo . MOOA>eztA

hence AM,, = M A, i.e. M, commutes with A.

Because My, and My — M, weakly in Hilbert-Schmidt space it follows that M., > 0,
and that M, is Hilbert-Schmidt operator.

Thus we can write Mo = Y Ay |up) (u,|. In particular if X is an eigenvalue of My

and A # 0, then the eigenspace W), of A has finite dimension.

Since A commutes with M, it follows that A : W, — W, and A is a self-adjoint

operator on W) there exists an orthonormal basis of eigenfunctions of A in W).

In summary there exists an orthonormal basis (¢,), of 2 such that ¢, are both
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eigenfunctions of M., and A and

My = ZAH |on) (nl
n=1

To conclude that M, = 0, we need to use ug € 7, i.e. ug is orthogonal to all eigen-
functions of A. From weak-convergence My — M, in the Hilbert-Schmidt topology

we know that

T
, . 1 i i
An = (0, Mocon) = Jim (@ns Mppn) = T11H;o<som f/l6 Ay (e dtson> =

0

0

Here
<(pme—itAu0> _ <€itA¢n7uO> _ <6it§n¢mu0> —0

where Ay, = &,pn.

Thus M, =0, i.e.
T

1 ’ ; o0
— / le™ ) (e | dt KN
T
0
in the Hilbert-Schmidt topology. Strictly speaking, we have only proven this for some
sequence T, —= (0. However, since the limit is independent of the sequence the

convergence 1" — oo follows.

Now take K to be any compact operator, then
T
1 )
? / HK@iZtAUoHZdt = TI‘[MTK*K]
0

since

||Ke—itAu0”2 — Tr [K |e—itAu0> <e—itAu0| K*} — Ty [le—itAu()) <e—itAu0| K*K} ]
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By the spectral theorem K*K > 0 and compact, and thus we can write
KK =Y ly|vy) (vn]
n=1

with £, 7.

Now

MTK* Z g Uny MTUTL Z En <vn7 MTUn> + Z En <Un7 MTUn> <

Ln<e ln>e
< € g <Una MTUn> + § en <Um MTUn>
n=1 bn>e
TV - \ ~" -
=Tr Mp=||lug||? finite sum

Thus for all ¢ > 0
lim sup Tr[MrK* K] < ||luo||* + 0,

T—oo

therefore
T—o0

Te[MrK*K] 222 0

’
Corollary 8.9. Let A be self-adjoint and K relatively A-compact and bounded, then

T
= / | e %t T2, 0

Lforuoejﬁ and uy € D(A). 0 O

Proof. If ug € 7€ and uy € D(A), then

/HKeltAu || dt = —/HK (A4t e (A +14) u0|| dt =% 0

compact

where we use that A : . N D(A) — J. hence (A + i)ug € . and Ruelle’s theorem.
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If ug € . and ug € D(A) then by Jensen’s inequality

T T
- / | e ugllde < | / || K e=itAyg|[2dt =% 0
0 0

If ug € . (not necessarily in D(A)), then there exists a sequence (u,), C % N D(A) such
that u, —= ug in 2.

Then

T T T

1 : 1 . 1 .

T/||K6_”Au0||dt< T/||Ke_”Aun||dt+T/HKB_”A(un—uo)Hdt
0 0 0

The first term converges to 0 as 7" — oo by the above and the second term can be estimated
by

T

T

1 B 1

7 [ e = o) < 1 o = ol - [ = [ = o]
0 0

and thus be made arbitrarily small by taking n — oo. Now noting that
1K e uo||* < || Ke™ g || K] ||

the convergence of the square follows as well. qg.e.d.

4 N
Theorem 8.10 (RAGE). Let A be self-adjoint (K,,),, a sequence of A-relatively compact
bounder operator such that K, ~—— 1 strongly, i.e. for allu € .

| Knu — ull 220
Then

%Z{UOE%

lim sup||(1 — Kn)e_“AuoH = O}
n—,oo teR

T—o00

T
F =S ug € A |Vn € N: lim %/HKHG_”AUOH =0
0
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Proof. If uy € 5., then
T
.1 i
Jim 7 ] =0
0

by the corollary and by the assumption K,u ~—— u strongly for all u € 4, i.e. |K,| < C

for all n € N by the uniform boundedness principle.

If ug € %

(1-— Kn)e’imuo ZEe
strongly (Exercise!). Combining ¢ = % & ., implies the conclusion. q.e.d.
é N

Theorem 8.11. Assume that A = —A +V is a self-adjoint operator on L*(RY), as V
is (—A)-compact. Then

(
T

A= ue L*(RY) | VR : %/ / | (e7" ) (z)|dzdt g

\ 0 |z|<R

;

K, = u e L*(RY ngrgogﬂg / | (e7"u) (z)|dz = ||ul?2
|lz|<R

\

\ y

Proof. The first part follows from Exercise 11.4.
The second part uses that 1y, <gy is relatively compact w.r.t. A which is equivalent to
1{z1<ry (A + 7)~! being compact which follows from 1y,<p(—A +4)"H(=A + i)(A 4+ ¢)~*

being the product of a compact and a bounded operator. g.e.d.

Remark 8.12. If we know that u € H.(A), then fMgR‘ (e_itAU)<q;)‘2 0 in the time

average. Can we prove that pointwise convergence, i.e.

t—+oo
jal<R

lim /‘(e_itAu)(x)‘2—>0
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This can proven for A = —A using
it(—A) [[w]| 2
e, < oL
To prove this for a general potential we hope that we can approximate e~ 4 via free
dynamics e®*?v. O

8.2 Wave Operator

Let A= —-A+V, Ay = —A on L*(R). We aim at finding ug € D(A) for each vy € D(A —0)

such that

lim He_’tAUO — e Moylle =0 = uy = lim ee oy,
t—o00 t—+oo

4 Y
Definition 8.13 (Wave Operator). If it exists we define the wave operator to be

Q4 1= s-lim e~**4ett4o
t—+oo

If the wave operator exists, then it is a unitary operator L?(R3?) — ranQ.. In fact

ran {2y C JZ.. O
\ S J
é N

Definition 8.14. We say that A is asymptotically complete iff ran 2, =ranQ_ = J7Z.

which is equivalent to the existence of

s-lim eitAoe—itA
t—=o0
A U V.

Remark 8.15. When does {21 exist? The main in the following shall be that if

|z| =00

V(z) —— 0 “fast enough”, i.e. if it is a so-called short range potential, then the

wave operators exist. 0]

(Theorem 8.16. If V € L*(R3) + LP(R?), for 2 < p < 3, then Q4 ewist. O )
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Remark 8.17. If |V (z)| < \w|++€’ for ¢ > 0 and |z| large, then V1 € L37°(R?),
where 6 = 6. > 0. Then the wave operators exist.
But if |V (x)| > |71\ for |z| large, then the wave operators do not exist. We need to

modify the approximation lim;_,.., e #4e™¥ where S # —A. O

é N
Theorem 8.18 (Cook’s Method). If A and B are two self-adjoint operators on F

with the same domain and if for p € F
/H(A — B)e"Pol|dt < o0
T

for some T > oo, then
QL p:= lim e 4B

t—+o00

¥

exists (as a limit in the norm topology.) O

Proof. We need to check that t — e~#4¢By is a Cauchy sequence/net then existence follows

from the completeness of 7. This is equivalent to

—itA itB,

_ ; t,s—-+o00
He eBy e zsAesz

ng 0.

In order to estimate this norm let us take the derivative

d ) ) ) )
E(e—ztAeztBsp) — eztA(_Z'A + iB)e”B

where we used that [f(C'), C| = 0 for any self-adjoint operator C' and bounded function f.
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Then

to
He_itQAGitzBQO . e_itlAeitlBSOH — /(_Z')e—itA(A o B)eitBSOdt <

t1

t2
S /HeitA(A _ B)eitB(pHdt _

t1

to
= /H(A _ B)eithoHdt _

t1

to t
= [lla=Breselar— [ljca- Bevofar 2= 0
T T

since

“+oo
/H(A — B)eith0||dt < 00
T

g.e.d.

Proof of [Theorem 8.16. From Cook’s theorem, we need to check that
/HVeit(_A)goH < 00
T

if o is “nice enough”, i.e. p € L'(R3) N L*(R?). We shall argue later that this is indeed

enough.

Assume that V' € L*(R?). Then

Il .t

Ve ™g|| ., <V y| o < ClIV]| 12 Y

hence

Veit(=2) <C||V||L2||90HL1<
fiveel < cEEGE <o

Assume that V € LP(R?) with 2 < p < 3. Then by Holder’s inequality

Ve ™ol . < IVl
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with %—i—% = 1. Here Heit(*A)ngLq can be controlled by Heit(*A)goHLoo and ||e

||l for g € [2, 00] by interpolation (Exercise 13.5)
Thus we have already proven that if V € L? + LP for 2 < p < 3, then

it(iA)SD”L? =

iy e it(—AFV) it(=A)
Qo tliglo e e "
exists strongly in L? for all ¢ € L' N L2
First note that €2, is an isometric operator on its domain which is dense hence it can be
uniquely extend to all of L?. More precisely let ¢ € L* and (p,), C L' N L? converging to
@. Define M, := e~ *4¢*(=2) then

HMtQSO - Mtl(IOH ’Mtzgpn - MtﬁonH + ||Mt2<90 - Qpn) - Mt1 (‘;0 - Qpn)H <

| M, on — My, pnl| + (| M, || + | M2, ) lp — onll =

J/

<
<

-~
=2

t1,ta—-+o00 n—o0

= [|Miyon = My pnll + 2l = onll =—= 2l = ¢l =0

q.e.d.

Remark 8.19 (Completeness). If V' is nice enough, then

Q= s-lim e AV it (=4)
+ t—o00

is well-defined on L?(R?). However, by the RAGE theorem we only know that ran(2,) C
H.(—A + V). When does ran(€2;) = H.(—A + V) hold.
If this is correct, then we say that 2, is complete. As a consequence, we can approx-

imate every u € H(—A+ V)

t—+00

Hez’t(—A—i-V)u . eit(—A) RSN

ol

as a consequence
| ("2 (z) |de EmasaNyy

jel<R
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Remark 8.20. Kato prove that € is complete iff

(Q+)_1u — tli}}}o eit(—A)e—itAu

exists for all u € H(A). O
é Y
Theorem 8.21. If V is short-range V€ L' N L™ and |V |1 + ||V ||oo is small enough,

then o
it~ A4V
Ve ™ol . < 757

for all t € R where o € L* N L*®. C is independent of t but depends on .
Consequently

JIveammg] it < oo

and hence
1 Jir o—it(—A) it(—A+V)
= sl
W e
. exists by Cook’s method. This in turn then implies completeness. 0 )

Proof. Tf [t| < 1 then we have

[Verea g < IVl | < 1V il <

o] Q

Thus it suffices to consider |t| > 1 which we shall consider now.

We shall use Duhamel’s formula: For A = —A+V, A; = —A

t
e*itAgp — e*’itAogp_F (_i)/‘ei(ts)oneisASOds.
0

Indeed .

eitAoe—itA(p — e_itAOSO‘f‘ (—Z) /eiSAOVB_iSA('OdS
0

because

d . . . . . . .
E(eztAoe—ztAgp) — GZtAOi(AO o A)e_ztACp — —ieZtone_ztAQO.
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Consider

¢
Ve iAo, 4 (—i)/Ve_i(t_S)AOVe_iSAgods

0

Ve o] . < <

L2

<veogll+ [Vett-oveiagds

We know that
C

[Ve el <IVizlle™ ¢l < 7

and

[Vertmatveste]| o < Vil Ve Ag] . <

||‘/'||L2 || —1sA H
$|3/2 1

However, the integral over s diverges thus it is only useful for |s — ¢| not too small. On the

other hand

Hve_i(t_s)one_iSASOHLz < ||V||LooHe_i(t_S)AOVG_iSASOHLz _
= VI [[Ve ™ol 2 <IIVIElle ™ || . = VIl
Define
= ([[Ve™ el i + [[Ve™ el 2)
M, = sup f(t)
s€[0,t]

By Duhamel’s formula we again have

t
Ve ol < Vel + [vetmye g, a
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The two terms can be estimated via

. , V
Ve ™|, < IVIp|le ™ ¢||, < C—H “?JFHD
, A . . Ve isA
Hve_Z(t_S)AOVG_ZSASOHL1 < ||V||L1He_Z(t_S)one_ZSASDHLoo < ”VHLl H |t |f/|2|L1

Hve_i(t_S)one_iSASOHL1 < ||V||L2He_i(t_s)one_iSA90”L2 _ ||V||L2Hve—isA(p||L2

In summary

t

ft < tg% / Hve—ztt SAOV@ zsA<pHL2_|_ HVG t(t— sAOVe ZSASOHL1)dS<

0

t
C : Js
<t fun{igm o
0

Thus

¢

Mt < 3
t2

bt 1 C
+ M, / mn{m 1}ds<|rvum FIVI) = S5+ MD(IV e + IV 1)

v~

=:D<oc0o

If D(||V||z + [IV[|1) < 1 then M, < 55, thus for all t € R

C

Ve ]2 + Ve g1 < ;
1+ Jt)2

which ends the proof by Cook’s theorem.
q.e.d.

Remark 8.22. In this case, L.e. (||V| 1 + [|[V]|o) being small, then for all u € L*(R?)

—it(— — t—00
||€ t( A+V)u it(— SOHLQ 00

for some ¢ € L* Thus u € H.(—A + V). Consequently H,(—A + V) = {0}, i.e.
—A + V has no eigenvalue. O
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Remark 8.23. Assume that the wave operators Qp = s-limy;_,o e #4e40 exist, Ay =
—A on L*(RY). Then AQ. = Q1A which is equivalent to Ay = Q7 'AQL. Qy :
L*(R?) — ran Q4 is unitary.

Take Q4 (z,y) to be the kernel of Q.. Then for all f

(AQLF) () = (A ) ()
=>/Amgamﬂwm=/mmwﬁﬁﬂw@
=$/Axa@wﬂw@:/QALW%m¥WM

~

— A,Q (2, k) f(y)dy = |20k|2Qu (x, k)

for all , k. Here Q. (z, k) is the Fourier transform of y — Q. (x, ).

Thus for all k € R?, z Qi(x, k) is “like” an eigenfunction of A w.r.t. to the eigenvalue

|2k|?. Here it might happen that x — Q. (z, k) ¢ L?(R%). O
é Y
Example 8.24. If d =1 and A = —A + V(z) where
Vo ifx >0
V(r) =
0 if v <0
then for all k&
A€27rik:x + Be—27rik:x’ ifr>0
Qi (I, k‘) = ) )
Oe27rzk:a: + D6—27”km, ifr<0
\ S

Remark 8.25 (Existence of Wave Operators). By Cook’s method €)1 exist if

164 a0t < oo

To

for ¢ in a dense set. Above we applied this to Ag = —A and A = —A+ V. We can also
apply this to Ag = —A and A = —A + |[v) (v] or A = —A + B where B is trace class.
One can also apply Kato’s method: If A — A, is trace class, Q4 = s-limy_, 1o, e 44

exists. There are many extensions, e.g. assuming that (A +7)~! — (Ag +)~! is trace
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class. O
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Scattering

A scattering experiment is characterised by a set of ingoing particles with momenta and
spins

{k1,817.--,k[,81}

and and a set of outgoing particles

{qlaala"'quaa'J}

and the so-called scattering cross-section

U(k17817"'7k17817q170—17"'7qJ70—J) =

==

where N, is number of outgoing particles of a certain type and F; is the ingoing flux, i.e. the

number of particles coming in per unit time per unit area.

Lippmann-Schwinger Equation

We are looking for a scattering solution @Z),f The + denotes the in/outgoing boundary

condition and k the asymptotic momentum at large distances.

UiE = limyp — (V)

207 Hy— (8 +ie)

This will deliver solution such that

k‘2

Hipyy = 5 iy
where H = Hy + V and ,
k

Hop = D4

167
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In position space with Hy = —%A

wi(,,,) _ eik-r o i / wv(rl)wi(r/>drl
k N 4 lr — 7/ k

Modelling a (Simple) Scattering Experiment

We prepare a particle in a “free” state, wave packet

ol ~1) = s [ @tk

such that p(r, —t) is outside the range of the potential.
Let o(r, —t) evolve by e (not Hy) to large times T' and analyse ¢(r,T) in terms of free

wave packets.

(1) What does “prepare the wave packet” mean? Can we map any wave-packet of free
mater (Hy), onto a scattering state of the free problem (H)? Is that mapping unique?

(Existence and Uniqueness of Scattering Theory)

(2) What is the fate of the scattering state? Can the incoming packet en up as a bound
state of H. (Asymptotic Completeness of Scattering Theory)

Point, Absolutely Continuous and Singular Spectrum

A Hilbert space is divided by a self-adjoint operator on it into the following spectral sub-

spaces:

¢, = span(eigenvectors)

the subspace of the pure-point spectrum,

A= A

p

the essential (continuous) subspace. One can further distinguish /7.
He = Koo © H;

where measure p, associated with u € 74, is absolutely continuous w.r.t. the Lebesgue

measure (i.e. there exists a measurable function f such that ;o = f\, where A is the Lebesgue
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measure). The measure associated to the vectors in the complementary space is singular to
A but continuous (i.e. does not contain delta functions).
1 € ;. behave like wave packets, i.e.

lim <e*"tHw | w> =0

t—=o0

For ¢ € ¢, only the corresponding time average decays.
A scattering experiment is composed of two dynamics: the free evolution Hy and the inter-

acting evolution H.

é N
Theorem 8.26. Let A be a self-adjoint operator and K relatively A-compact and denote
by POF = . and P = I, the projection into the continuous and absolutely

continuous subspaces respectively, ten

T

: 1 —1 c 2

Jim & [P =o
0

lim ||Ke 4Py =0

T—o0

Remark 8.27 (Implications for Schrodinger Operators). Let xgr be the characteristic
function of a sphere of radius R. Then xpg is (—A)-relatively compact.

In particular for any function 1 € S = H#)—4

lim [|xge ] =0
t—o00

Theorem 8.28 (RAGE (Ruelle, Amrein, Georgescu, Enfl) Theorem). Let A be a self-

adjoint operator. Suppose there is a sequence of A-relatively compact operators (K,),,
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which converges strongly to the identity. Then

n—oo T—soo0 T

T
1 .
He=Y €| lim lim —/||Kne_”’4¢||dt — {]
0

%z{we%

lim sup ||(1 — K,)e 4| = 0}
n—oo t>0

Scattering Operators (). (Mgller)

Let Uy(t) = 7o and U(t) = e~ Then the scattering operators are defined on #2°( Hy)
via

Q= s-lim U(t)Up(—t)

t—+oo

when they exist.

Definition 8.29 (Asymptotic Completeness). If Q. are bijections #2°(H) <> J£°(H,)

the scattering problem is said to be asymptotically complete. O

()4 exist and are complete for “short range potentials”

A potential V is called short ranged if
/HV(—A + 1)7113TCHdr < 00
0

and V(—A + 1)7! is relatively bounded. Here B, denotes the ball of radius r.

For all € > 0 the potentials ﬁrg are short range, but the Coulomb potential is not.

Stationary Scattering Theory

. —et . .
1;%16/6 f(t)dt _tli>rg> f(t).
0



8.2. WAVE OPERATOR 171

Representing H via its porjection valued measures
%:/@@)
0

Then o .
pitH p—itHo _ 6itH/€—itEdP(E>eitH _ /eit(H—E)dP(E)
0 0

Then
QL = hﬁ)lg / e e / FH-BqP(E)dt =1 — 11?01 / (H— E +ig)'VdAP(E)
0 0 0

which yields the Lippmann-Schwinger equation.

Asymptotic Completeness

A potential is called asymptotically complete if

QL P,.(Ho) A = Pa(H)I.

This is the case when the potential is short-range, i.e.
L/WK—A+1YHmﬂmw<m
0

or when Cook’s criterion holds

/||VeiitH°gp||dt < oo

to

Consider the self-adjoint dilation operator

1
Dzﬁ(a:-p—irp-:c)
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which generates the dilations

3
2

Uni(x) = (e*)2y(err) = ePip(a)

Define the projectors onto the in- and out-going subspaces via

P, := Pp(0,+00).

We also have Perry’s estimate for any n € N

C

H1B2v|t|e—itHof(hO)PD((:I:R, :|:OO))H < mf

where f is differentiable function with support in [vZ, vi] where v < .

Functions of the type
¥ = f(Ho)Pp((£R, +00))¢

are dense in 7.

By Cook’s criterion €24 exists and thus 4 P,..7Z C P,..7¢. The short range property enters
as (e — 1)f(Hy) Py being compact.

Final steps of the proof: Take 1(t) = e "H1) from P,..#. We need to show that ¢ € ran .
At large t > 0 () can be meaningfully decomposed into ¢_(t) + ¢, (t) where @ (t) € Pp +.

In this step short range-ness is essential, i.e.e f(Hy) — f(H) is compact.

Next we see that
[l =+ = lm ((t), Qg () + Qi (1)

t—+

Assume there exists 1, which is orthogonal to ran€2,.

Teschl 12.43
lim (P (Ho)'e "0050(1), (1)) = 0

t——+o00
Intertwining property: (bijective map between the dynamics of Hy and the scattering dy-

namics of H)
Qi f(Ho) = f(H)Q

at large t: ¢ (t) is completely in P,..7. At all times scattering wave packets are in P,.(.7¢).
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Coulomb Scattering

Wave operators for Hy = —A, H = —-AF % do not exists. Why? The classical trajectory of

a particle moving classically, radially away then
r(t) = ct + dlog(t) + O(1)

never ~ ct.

There are three ways out:

(1) Exact solutions and eigenfunctions are known for H = —A + %; hypergeometric func-

tions

(1b) Cross-section formulae are known but they only contain information concerning the

asymptotic momenta py (Rutherford formula).

(2) The Dollard Hamiltonian

1
Hp(t) = —A — ———9(—4)t|A -1
Then .
. 1 —1 | H (S)dS
Qf = slim et=A=7)e ({ i
t—+too
exists.

S-Matrix

We are interested in the transition probabilities

| (05000 |

or in other words

S:=0 0,

This is a unitary operator
S: P, — P, I
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S inherits all symmetries of H and Hy. In particular
[H(), S] = 0
via the intertwining property. This means that “free” energy is conserved by S.

S=1lim [ (1-2mié(Hy — E)(V —V(H — E +ie) 'V)d(Hy — E))dE

el0
Abel limit.
For a rotationally symmetric potential the S matrix must commute with the angular mo-

mentum operators, i.e.
S|E, t,m) = %™ |E ¢, m)

here k? = 2E. d,(k) is called the scattering phase.

Note that the 1 in the S-matrix formula above induces a singularity for transitions of the

type (p, Se).
Thus we restrict our attention to the so-called T-matrix.

T(z)=V -V(H-2)"'V.
We define the “on-shell” matrix element

t(k, k') = 151%1 (k|V—-V(H—-E—ie)'V|k)

where

k) = (2m) " 2e%® (kK =5(k — k)

Note that
(k|VQ_|K) = (k|Q.V|K)

Now defining for two unit vectors n,n’ € R3.
f(k,n,n') = —(27)*t(kn,tn’)

then
o(kn,kn') = |f(k,n,n)]?



Chapter 9
Many-Body Quantum Theory

Our Hilbert space in the following shall be 7 = L2<(]R3)N> = L2(R?N) = @V L*(R?).
Remark 9.1. In general we have for finite dimensional vector space Hy, Ho
L*(H, ® Hy) ~ L*(H,) ® L*(H,)

given by

U; & Vj = Uy ® vV
where (u;); is a basis for L*(H;) and (v;); is one for L*(H,) and
(u®v)(z,y) = u(z)v(y)
Note that L?(H,) x L*(Hy) — L*(H, ® H,), (u,v) — u ® v is bilinear and thus has a

unique lifting to L?(H,) ® L*(H>). O

The typical many-body Hamiltonian for N-particles is

Hy =) (<A +V(z))+ Y Wilwi—1)

i=1 1<i<j<N

where x; € R? is interpreted as the position i*" particle.

Example 9.2. A molecule with M nuclei at (Rj)j.vzl with charges Z; > 0 then the

175
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Hamiltonian of N-electrons is

N Mooz 1 7.7,
HN:;]<_Awi_in_]Rj>+I<Z me Z |R.J_—Rk|'

j=1 i<j<iN I<j<k<<M Y
N

S

Vv
constant

Remark 9.3 (Fundamental Questions). 1) When is Hy self-adjoint?
2) What does o(Hy) look like?

3) Dynamics (existence of wave operator, asymptotic completeness)

|z|—o00

Remark 9.4. In one-body theory, —A+V(x), if V() —— 0 “fast”, then V' is (—A)-
compact and thus —A + V is self-adjoint with domain H?*(R?) and oeg(—A + V)
Tess(—A) = [0, 00).

In N-Body theory the interaction potential W (x; —x2) is never a compact perturbation

|z| =00

of (—A) even if W(x) —— 0 “fast”. This is the case as W(x; —x2) 4 0 as |z1|, |xe| —

00, i.e. by taking xo = x1 + k where k is some constant vector. O

4 Y
Theorem 9.5 (Kato). Let
N
Hy = Z(—Am + V() + Z W(z; — x;)
i=1 1<i<j<N
with x; € R3. Then this operator is self-adjoint on L*(R3N) with domain H*(R3Y)
. provided that V,W € L*(R3) + LP(R?) for 2 < p < oc. O )

Proof. This follows from [Theorem 5.12| i.e. we have to prove that V(z;)mW (z; — z;) are

bounded w.r.t. — Zfil A,, = —Agsy with relative bound smaller than ¢ for any € > 0, i.e.

IV (z:) W2 < ellll ey + Cel[¢]| 2
IW (i — ;) ¥| 22 < |9l 2eony + Cel[¢]] 2
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The first case follows as in the one-body theory. Concerning the second suppose that W € L?,
then

W (e — y)u|2a = / Wz — )P, .. )Py - - - doy <

< /(/|W(l’z‘—fj)|2<83ip|‘1’($17~-737N)|2)d—fi> [ de;.

JF#i
Here

sup ’\I/(.Z'l, Ce ,,Z‘N)‘Z g CH\IJ(.ZEl, e ,Z’N)H%%(Rg)

thus

9o = 0l < C [ ([ 1= P10l ot ) T =

J#
=0 (IR Fo ol e ) T <
J#
<N 172 ) 19 M1 212 s

Note that if W € L*(R3) + LP(R?) then we can write it as W = W, + W, with W, € L2 W, €
L*> and [|[Wq||zz < e. Thus

|W (w5 — 25) W2 < Wiz — 25) V|| g2 + [[Wolw — ) V|| 2 < Ccl| V| gaqmany + [|[Wa|ool [ ¥ 22

for all € > 0.
qg.e.d.

Remark 9.6. There is a nice story behind the proof of this theorem which can be found
in the paper “Tosio Kato’s Work on Non-Relativistic Quantum Mechanics” by Barry
Simon https://arxiv.org/pdf/1711.00528.pdf. O

Now we shall consider what o(Hy) looks like. Note that oess(Hy) # Tess(—Agsn) = [0, 00)
except when N =1 or W = 0.

Assume that
N

Hy =Y (A + V(@) + > Wlzi—a))

i=1 1<i<j<N

and V,W € L*(R3)+ LP(R3) with 2 < p < co. We know that Hy is self-adjoint and bounded


https://arxiv.org/pdf/1711.00528.pdf
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from below, i.e.

Ey :=info(Hy) > —o0.

Theorem 9.7 (Humitzer, Van Winter, Zhislin (HVZ)). Under these two assumptions

and W > 0, then o.(Hy) = [En—1,00). O
~
Example 9.8. Consider the Helium Hamiltonian
Z A 1
H2 = _A:rl - Aaﬁg -
N |

with Z > 0. Then

= an(-a- £) ) <[ £

since the spectrum of H; is given by
VAR
o) = (~15) Ul0.)

where each eigenvalue has multiplicity n.

Proof. (D) The key point is that
N-1
HN = HN_1 + (_A:rN) + V((L‘N) + Z V(m, — :vN).

i=1
Take A > En_1. We prove that A € oess(Hy) by constructing a singular Weyl sequence
(™), € L*(R3N) of unit vectors converging weakly to L? and

1CHy = NIl <=5 0

We chose %) = zp%c)_l@)go(k), where zp%“)_l is a Weyl sequence for Ey_1 = info(Hy_1) €
o(Hy_1), ie. [[¥§),]lz2 =1 and

k—o0

I(Hy = No§ e =250

By a density argument, we can take %(5)_1 such that supp wj(\]f)_l C Bgsiv-1)(0, Ry) with
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Rk k—o0 +00

On the other hand, A — Ex_1 € Oess(—A+ V) = 0ess(—A) = [0,00). L.e. we can choose
a Weyl sequence ¢, such that [|o®)||2@s) =1, o™ — 0 in L?(R?) and

I8+ Vian) = A= Exa))e® i ==
In face wan choose ¢* such that supp p*) C {z € R? } 2| > 2Ry}

k)

With the choice w ), ® ¢®) then

I(Hy — NP < [(Hy-1 — Ex-1)0 ), @ o® |+
+ H(—A +V(an) — (A= En_1)0i), © @]+

i — TN wN 1@ (k)

We have
k—o0
I(Hy—1 — Ex-)v8 @ o®|| = [[(Hy-1 — Ex-)o8 ]| o™ 2222 0
=1
k k—o0
[(=Asy + V(zn) = (A= EnoO)N, © oW = [08 1 [(=Auy + V(zn) — (A = Exn_1))p®|| £ 0
=1
N—1

= H 1{|a:z—zN|>Rk} W( — 17N)77Z)N 1 ® (k)HL2 k:—)_oo) 0
—_———

Ry, —o0

0

ZW( _$N)1/)N 1®80

i=1

since |z;| < Ry, |zn| = 2Ry.

(C) Here W > 0 is important. Take A\ € 0es(Hy). Then we can find a Weyl sequence 7,/1](\];)
such that ||¢](\’,€)HL2 1, ¢y ) 222 0 and

I(Hy — N 2220

Using the Lemma below we may choose a partition of unity as described therein and

apply the IMS localisation formula

-A= Z(%’(—A)%’ —|Vail?)
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Now we have X\ = limj_, <w](\l,€), H N¢§5)> and

N N
<1/11(5)7 HN¢§@> = Z <¢§5)7 SOjHN%l/fz(\I;)> - Z W8, Ve 2 i)

Jj=0 Jj=0 "

The right-most term converges uniformly in £ to 0 as R — oo.

Further
<¢%€)7S00HN<P0¢§\];)> > by / |<P0|2|1/)§\17))| 20

<0 R3N

for fixed R since supp g is bounded and @Z)](\’;) converges strongly to 0 on bounded sets

by the Sobolev embedding as %(\I/C) is bounded in H'(R*") and converges weakly to 0.

fj=1,...,N

(4 mttvons?) = (9 Hyy =20+ Vo
——

>2EN_1

N
+ > Wiz — xN))SOj 1(5)> >
=1 >0

> <¢§\’[€), Pj (EN71 +S_A$N) + V(xN)l)Spjwz(\’[f)> >

Vv
>0
as R—oo

k
> By / o, PP 4 0(1) o

Thus
N
S (ot > B (1 - (o mtn)

Jj=1

> En_1(14+0(1)gsee) + 0(1) posoo

Altogether we may conclude
A= lim (o, Hyul') > Bx
— 00

thus oess(Hy) C [En, 00).
q.e.d.
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Remark 9.9. Indeed, without the assumption W > 0, we still have os(Hy) D
[En_1,00). O

é )
Lemma 9.10. There exists a partition of unity in R*N such that 1 = Z;V:O gp?, p; 20

smooth such that
1) supp ¢y C {z = (21,...,ZN) € ]R3N‘ max |z;| < 2R}
2) suppp; C {x = (z1,...,zy) € R | |z;| > R}

3) |Veol, |Ve;| < & where C is independent of R.

o Wy
Proof. Exercise 14.2 qg.e.d.
4 Y

Theorem 9.11 (Zhislin). Consider the Hamiltonian

i = A 7 1
NZ_Z( zi_m)Jr 2 |z: — ]

i=1 v 1<i<j<N

with x; € R3. This describes an atom with Z protons at the origin and N electrons.
We know that Hy 7 is self-adjoint on L*(R3N) with domain H*(R3N) and o.s(Hy 7) =
[ENfl,Za OO) .

If N < Z+1, then En z < En_1z and Hy 7 has infinitely many bound states below its

essential spectrum. 0
N Y

Remark 9.12. The condition N < Z + 1 follows also on physical grounds as at large
distance a nucleus with charge Z and N —1 electrons appears as a single charged particle
with charge Z — (N — 1). A further electron will be attracted to this particle if the
charge of the particle is positive, i.e. Z — (N —1) > 0.

However, it is an open conjecture, called the ITonisation Congecture, that if N >
Z+1, then Ey 7z = En_1 7 and Hy z has no bound states below the essential spectrum.

In fact we know that it fails for bosons, i.e. an atom has bound states for bosonic
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electrons even for N > Z + 1, but it is an open problem fro fermionic electrons. 0
Proof. We shall proceed by induction.

(N=1) H; = —A — Z on L*(R?) has eigenvalues —Z5 with multiplicity n? for every n =

|z 4n?
1.2, ..

IS Assume that the theorem holds for N — 1 and consider N. We know that Hy_; 7 has

a ground state En_; 7, i.e. Ey_1 7 is an eigenvalue

Hy 1 72Yn1 = En_129N

We wish to construct a sequence \I/%k) of normalised functions with disjoint support

and
(W0, Hy80) < Eno 7

for all k = 1,2, dots. By the min-max principle then

p(Hy-1,7) < max <‘If§\iz), HN,Z‘IJE\?> < En_1,z = inf oes(Hy,z)

1<i<k

Thus all p,(Hy z) are eigenvalues and p1(Hy z) = Enz < Ex—1.z.

We shall begin with a trial wave function \IJE\?) = Uy 1 ® WM je. ‘IJS\];)(xl, CLTN) =
Un_i(z1, ..., on—1)p® (zy).
Then

(0, Hy ) ~ Bx 1z = < ( (Hy-1 = Ex-1.2)+

( I:cN! Z ]xl_xN|)>\If§\],€)> -

=0+ [ 1960 an)P —/‘x e )P

RS

v e N )
+Z | N—1 l'l, y UN 1)’ |(IO (xN)|d‘]j1d$N

[zi — o]

3N

We will take ©*) to be a radial function for in that case we may apply Newton’s
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theorem to see

]go(’“)(a:N)deN _ |o®) (zn)]” don /\so(k zy)|
| Jai—anl mac{lal, Jon[F N S ) ]
R3 R3
Thus we find
B[ Wy, )™ ()] P (x)
Z/ ML dxl-de«N—l)/ de
~ |z — ] |
RsN R3
We conclude that
7
<\If(k) HNfo(’“)> En_1z < /|V90 m—ilso(’“)(x)lzdx

where Zy =2 — (N —1) > 0.

Here we can chose o®)(z) = R, ? g00< ) for some o € €>°(R?), radial, |0z = 1.
Then

1
[rveer - |Hmnm—m/W¢ - | D@ <o

]Rd

If Ry large enough. We have to prove that (W(k)> have disjoint support for which it
k

is enough to establish that ¢®) have disjoint support, which we can do by choosing

supp @ C {1 < |z| < 2} and Ry, = 4*.

q.e.d.

9.1 Particle Statistics

If we have a system of N identical particles with wave function W € L*(R3*Y), then it has

to satisfy one of the following two conditions

e Bosons: for all 0 € &(V)

\I’N($1, T2, .. ,xN) = ‘I’N(%(m Lo(2)y - - - ,%(N))
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e Fermions: for all 0 € G(N)

Uy (@1, 22,...,0n8) = SgH(U)‘I’N(%(l), To(2)) - - - ,%(N))
( )
Example 9.13. e Bosons: Uy (xy,...,2x) = (u®V)(z1,...,2x5) = u(xy) - - u(ay)
e Fermions:
Un(zy,.. . zen) = (g A~ Auy)(xg, ..., 25) =
uy(ry)  ug(wy) -+ un(r1)
1 ur(x2)  ug(wa) -+ un(xg)

= det

VA

u(zn) we(zn) -+ un(xn)

where (u;)Y | is an orthonormal family in L*(R®). This is called the Slatter de-

\ terminant. y

é N
Theorem 9.14. The Kato theorem, HVZ theorem and Zhislin’s theorem hold both for

bosons and fermions, i.e. for

N
Hy =) (-Ag+V(z)+ >, Wiz—z)
i=1 1<i<j<N
on L2(R3) and L?(R3). O
\ J
e 1

Theorem 9.15 (Ground State Energy of Non-Interacting System). Consider the Hamil-

tonian
N
Hy =Y h,,
i=1

on L2(R3) or L2(R3) where h is a self-adjoint operator on L*(R3) and h is bounded

from below. Then
1) For bosons, uy(Hy) = Nuy(h),

2) For fermions, ui(Hy) = S0, mi(h).
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{ o)

Proof.

Bosons Lower bound: & > pi1(h)I 2(rs). Then

HN = Z hxl N,U,l ]IL2(R3N)

here

hxi = ]ILQ(R;),) Q- ®}TL® e ® ]ILQ(R:),)
ith variable
and

HLQ(RsN) = ]ILQ(]R3) R R HLQ(R3)

Thus 11 (Hy) = Npai(h). For the upper bound, per definitioenm iy (h) = inf ), ,=1 (u, hu),
125} (HN) = inf”\pN”LQ <‘;[JN7 HN\IJN>.

If we choose Uy = u®", then

N

N
(Un, HyWy) = <U®N7 Z hin®N> = Z IIU||f2_1 (u, hu) = NHUH%_1 (u, hu)
i=1

=1

thus
pr(Hy) < inf (N ha®Y) = Ny (h)

l[ull p2=1

Fermions For this we need the two lemmas below. For the lower bound we have for a wave
function ¥y, its density matrix 0 <

gammay, < 1, Tryg, = N and

<\IJN,HN\I]N> TI' h’)/\pN

HMZ

For the upper bound choose ¥y = uj A-- - Auy with (u;), being an orthonormal family.

Then
N

Yoy = Z |us) (wil

=1

Then

Mz

<\PN>HN‘I/N> TI‘ h"}/\pN ul,hul

=1
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Minimising over all orthonormal families yields

N
m(Hy) <D pi(h).
=1
q.e.d.

Lemma 9.16 (Pauli-Exclusion Principle). Take Wy be an anti-symmetric wave func-
tion on L*(R3N). Define the density matriz (one-body reduced density matriz) to be the
positive, trace-class operator with trace N, vy, : L*(R?) — L*(R3) given by the kernel

Yoy (T3y) =N / Un(z, 22, ..., 2N) YN (Y, T2, ..., xx)dEy - - - dEy

R3(N-1)

Indeed Uy — |Uy) (U] is a projection on L2(R3N) with kernel

(‘\IJN> <‘I’ND(X§Y) = ‘I’N(X)‘I’N(Y)

with X,Y e RN, Thus Yoy = N Tro_, |‘IJN> <\IIN|
Then 0 < vy < [r2mws) as quadratic forms. O

Proof. 1t is easy to see that 7, = 0 because |Uy) (Uy| and

Tr’Y\I/N :/VQN(.ZU,J])CLI:N/PIIN(LU,Z’Q,7[L'N)|2dl'd$2dl‘N:NO

R3 R3N

It is trivial that 0 < g, < N, but in fact g, < 1.
From QFT we have (f, vy, f) = (¥n,a’(f)a(f)¥x). By the CCR (canonical commutation

relations)
1£117: = {a'(f),a(f)} = o' (f)a(f) + a(f)a' (f) = a'(f)a(f)

Thus
(fovenf) <CUN || | 229N) = 11f122

for all f € L?(R?). Thus vy, < 1.
A second proof of vy, < 1: We know that

Yoy = D Nilfi) (fil
=1
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where \; are eigenvalues and (f;), is an orthonormal basis of L*(R?).
The inequality vy, < 1 is equivalent to A\; < 1 for all 7. Let us prove that \; < 1. We know
that L*(R3) = [?(R3%) ® - - - ® L*(R®) has an orthonormal basis of the form

{fil " ® fZN}zl ,,,,, iN>

Thus we can write

Uy = Z Ciroinfir @+ ® fin-

Because Uy is anti-symmetric it follows that c;, if some ¢; = iy for j # k. Then we

7777 iN

compute that

.....

and

<f>'7\Ifo>: /EQN(I’I‘%"'7xN)\IIN(yax2v'"7$N)f(y)dIdydx2"'d'rN:

R3N

- ¥ /f D () fon )

fjl (y) e ij (%N)f(y>dl‘dydl’2 te 'dmNcil ~~~~~ inNCi1senin
N

= Z Z Gy, <f fZ1><fj17f>H<fik7fjk>L%k

U1y N J1se-sd N k=2

H;cV:Q (fir> fix) 2 #0iff i = jj for all K =2,..., N and this equal 1 in this case. Thus
Tk
<f>7\I’Nf> = Z Cjrin,ein <f fz1> <fj17f>

Then by the Young inequality we have

. .2 . 2 o 2 ) 2
|<f,’7\I/Nf>| < Z |Cll ,,,,, 11\1’ ‘<f21>f>| +2’C]1712 ,,,,, 1N| Hle?fH < ||f||2L2

q.e.d.

Lemma 9.17. If h is a self-adjoint operator on L*(R3), and 0 < v < 1, Try = N.
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Then
N N
inf Tr[hy]=  inf (pishosy = Y  pi(h)
O
Proof. First suppose that
h=">" i lus) (ui]
i=1
Then -
Tr(hy) = Mg AUy YU
(h) 2 { 3k )
with 0 < o; <1, Y0, a; =Try = N.
The result follows from
N 00
imf{z,uiozZ ZO{Z—N}:,UQ—F + Un
=1 =1
The general case is left as an exercise.
q.e.d.

Remark 9.18 (Real Calculations). “Interaction” problem, use Density functional the-

ory
inf <‘IIN7HN\I/N> = inf inf <\IJN,HN\I/N>
1Nl L2 %i?f]{[ TN =yw =Y

If we know that £(v) := infy sy = (N, HyWx) then the problem

it £0)

Try=N
can be solved practically. However, computing £(y) is impossible even by Quantum
Computers.

However, we can approximate &(7). 0]

(Deﬁnition 9.19 (Hartree-Fock Approximation). For fermions (electrons). Let Wy :]
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up A -+ Auy and

Then
(Un, HyUy) = Tr[(—A+ V)7] + % // W(z —y)(v(z,2)7(y, y) — (=, y)|*)dedy

with v = vy, = SO~ Jus) (ug]. This is called the Hartree-Fock functional.

For bosons one takes Uy = u®" and

(0, Hyn) = N (o, (=84 V) + 2D [ = o) Plu)

the Hartree functional.

. y

Remark 9.20. In the case of Bose-Einstein Condensation with very-short range po-

tentials this can be further simplified to the Gross-Pitaevski functional

EP (u) = (u, (—A 4+ V)u) + 47TCL/ lu(z)[*dx

here
dma

it [1vseg W(w)!f(x)\zdx‘f(x) e

In the exercises we consider the case

+o0, if |z] < a

0, if |z| > a
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Chapter 10
Entropy

Recall that for a mixed state v in a Hilbert space, then v > 0 and Tr[y] = 1. Thus
v = >, Ni|ug) (u;] and thus for any function defined on the spectrum

Zf ) |wi) (il -

4 Y
Definition 10.1 (Von Neumann Entropy). For a mixed state v we define

S(v) := — Tr[ylog(y Z/\ log \;

é N
Proposition 10.2. 1) S(v) >0, A\; € [0,1], S(v) =0 iff v is a pure state.

2) Ifdim % = N < oo, then max, S(y) = log N, with optimiser y = + SOV ) (]

3) Gibbs Variational Principle: The ground state energy Eqy of a self-adjoint Hamil-
tonian A is given by
Eo = inf Tr[Ay] = 1 (A)

~=0
Try=1

(this is at zero temperature).

\ DJ

Proof. 1) Fort € (0,1) the function t — —tlogt is positive and equal to 0 at t = 0, 1.

191
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2) The function f :t — tlogt is convex in [0,00) as f”(t) = > 0. Thus

(ER) )

7

q.e.d.

If we are in positive temperature 7' > 0, then

é N
Theorem 10.3 (Gibbs Variational Principal). The free energy F is given by
F= mf (Tr[Ay] — TS(7)) =: —log Tr(e=4/T)
e
and there exists a minimiser ya = f;f}” where Z, = Trle=4/T] provided that e=4/T is
a trace class operator.
N U Y
é N
Theorem 10.4 (Klein Inequality). Given a function F : R* — R of the form
N
= Zfz(l')gz(y) >
i=1
Then for any self-adjoint trace class operator A, B (we do not require A, B > 0, Tr[A] =
1 =Tr[B]) then
Tr[F(A, B)] > 0..
A L y

Remark 10.5. If we know that A, B > 0, then it suffices to assume F(z,y) > 0 for
x,y = 0. More generally, all we need here is F(z,y) > 0 for z € 0(A),y € o(B). d

Proof. By the spectral theorem, A =" aq |ua) (uo| and B = )" bg|vg) (vg|. Thus

B Zfi(A)gi(B> = Z fi(aa)gi(bp) |ua) (ual |vs) (vs]

i,

Zﬁ aa)gi(bg)| (Ua,vp) | —Z] Ugs V3) |2 ZfZ aq)gi(bg) =

i,a,3

~
=0
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qg.e.d.
é N
Corollary 10.6. If f : R — R is a convex function and A, B are self-adjoint trace-class
operators, then
Tr[f(A) — f(B) = f(B)(A—B)] > 0.
L Moreover, if A, B > 0, we only need f : R, — R be convex. O )

Proof. Let F(z,y) = f(z) — f(y) — f'(y)(z —y). Then F(z,y) > 0 by convexity and the
claim follows from Klein’s inequality. (Note that F(z,y) = 1 f(¢)(z — y)? for some ¥ in
between x and y by Taylor’s theorem if f is suitably differentiable). g.e.d.

Remark 10.7. In Klein’s inequality
F(z,y) = Zfz(x)gz(x> = Zgz(x>fz($)

but in general

Z fi(A)gi(B) # Zgi(B)f@-(A)

However, by cyclicity of the trace

Tr =Tr

Z fi(A)gi(B>

Zgi(B)fi(A) :

As consequence if f(t) =tlog(t) and A,B >0
Tr[Alog A — Blog B — (1+1log B)(A— B)] >0

Thus
Tr[Alog A — AlogB] > Tr(A—B)=1—-1=0

for the penultimate equality holds for density matrices.
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é Y
Definition 10.8 (Relative Entropy ).

S(A|B) = Tr[Alog A — Alog B].

N\
Theorem 10.9 (Improved Klein Inequality for Relative Entropy). If A, B are mized

states, then

S(AIB) > % Tr[|A - BJ?]

In particular, S(A|B) = 0 iff A = B. Thus S(A|B) can be understood as a sort of
| distance between A and B. O

.

Proof. Using Klein’s inequality for f(t) = tlog(t) for

1
Fz,y) = f(z) = f(y) = F)x —y) = 5z —y)”
the result follows if we can prove that F'(x,y) > 0 for all z,y € [0, 1].
This follows from F(z,y) = (5 f"(¥) — ) (z — y)?, for some ¥ in between z,y. Here f”(¥) =

%2 1. q.e.d.

Remark 10.10. We can check

F(z,y) = zlogx —ylogy — (1 +1logy)(z —y) —
1

=wlogz —ylogy — (z —y) - 5(z —y)

[\
A2 -
o

for all z,y € [0, 1] and

Thus y — F(z,y) has a minimum at x = y for which F(z,z) =0, i.e. F(z,y) > 0.
U
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Proof of [Theorem 10.5 Take A self-adjoint such that e~ is trace class. Let consider T = 1,
otherwise rescale A. We check that

Tr[Aya] — S(va) = Tr(Ava) + Trlyalogva] = Tr(Aya) — Tr(yalog Z4) — Tr(yaA) =
= —log Z4Tr(ya) = —log Z4.

It remains to prove that for all mixed states v
Tr(Ay) = S(v) = Tr(Aya) — S(7a)

and equality only holds for v = v4. Note that

S(v|va) = Tr[ylogy — ylog(va)] = Tr[ylog~y]| + Tr[y(log Za + A)| =
= —S(7) + Tr(Ay) +1log Z4 = Tr(Ay) — S(v) — Tr(Aya) + S(va)

and we know that S(v|y4) = 0 and 0 iff v = v4. g.e.d.

This implies that Tr(Av) — S(y) > —log(Tre=4) and thus S(v) < Tr(Ay) — log Tre=4.
Indeed S(7) = max4(Tr(Ay) —logTr(e™*)). This expression tells us that v — S(v) is
concave. Because vy — Tr( A7) is linear in 7 (as the “maximum over linear /concave functions”

is a concave function).

4 Y
Definition 10.11 (Partial Trace). Given a Hilbert space ¢ = Jf ® 7. Let p be a

density matrix on . Then p; = Trs p is a density matrix on 7 and ps = Tryp is a

density matrix on .745.
(2

Here the partial trace Tr; is defined as follows. We can write p = ), pgl) ® p; ) where
pl(-j) : A — J;. Then
Try(p) = Y Tr[pi"]p”
d similarly for Trs p. O
| and similarly for Tr; p )

Remark 10.12. It might happen that even if p is a pure state on ¢ = 4 ® % but

p1, p2 are mixed states. 0
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7~ Y
Example 10.13. Let
| '®”i><2m®w = AR @ ) (O =
i irj
=D A ) gl @ o) vy
i,J
Then
Trgp—Z)\/\ |u;) (uj| (vi, ;) Z|)\| lui) (u
ij
p2="Trp= Z Ail? i) (il
\ : J

Remark 10.14. If p is a pure state in J# ® 7%, then the eigenvalues of p; and py are

the same counting multiplicity (expect for 0). O

Remark 10.15. Given a mixed state p; on 77, then if dim J% > dim J# there exists
a pure state p on J4 ® 9 such that p; = Try p. O

é N
Proposition 10.16.  5) Sub-Additivity: Given a mized state p on J4 Q 5 with

partial traces pi, ps. Then

S(p) < S(p1) + S(p2).

\ .

Proof. We claim that

S(p1) + S(p2) = S(p) = S(plpr ® p2) 2 0

from which the assertion follows. Noting that log(AB) = log(A) + log(B) for commuting

operators A, B, in particular for

(rhor ® 1) (1 @ pa) = p1 @ p2
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we have

S(plp1 ® p2) = Tr[plog p — plog(p1 ® p2)] = Tr[plog p — plog(p1 ® L) — plog(Ly ® p2)] =
= Tria(plog p) — Triz(plog p1) — Tria(plog p2) =
= Tr12(plog p) — Tri(p1log pr1) — Tra(plog pa) = —S(p) + S(p1) + S(p2).

q.e.d.

Remark 10.17. In general there does not exist an inequality S(p12) = S(p1), e.g. it
might happen that pys is pure, i.e. S(p12) = 0, but p; is not pure, S(p;) > 0. In this
case

S(p12) < S(p1) + S(p2)

is trivial. What really happens here is the “cancelation of information” 0

4 Y
Theorem 10.18 (Araki-Lieb).

S(p12) = [S(p1) — S(p2)]

\ DJ

Proof. Using sub-additivity we have S(p12) < S(p1) + S(p2). By the purification lemma,
there exists a pure state pj93 on S ® 75 ® 73 such that p1o = Trz p12s. Then S(p12) = S(ps3)
and S(p2) = S(p13) and thus

S(ps) < S(p1) +5(p1s)

which implies that S(p13) = S(p3) — S(p1) Similarly we find S(p13) = |S(ps) —S(p1)|. q.e.d.

f N
Theorem 10.19 (Strong Sub-Additivity - SSA). If p1o3 is a mized state in JG4 ® I ®

6, then
S(p1) + S(p123) < S(p12) + S(p13).
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Remark 10.20 (Interpretation). We can interpret sub-addivity as
S(AUB) < S(A)+ S(B)

but SSA as
S(AUB)+ S(ANB) < S(A) + S(B)

This deep result was proven by Lieb-Ruskai in 1973. U

SSA is equivalent to

é N
Theorem 10.21 (Monotonicity of Relative Entropy). Let p1a, 012 be density matrices

on a Hilbert space 764 ® 5.

S(pr2lo12) 2 S(prfo2).

Remark 10.22. This monotonicity implies SSA as follows:

S(p13) + S(p2) — S(p123) = S(pr2slpis @ p2) = S(pr2lpr @ p2) = S(p1) + S(p2) — S(p12)

Thus
S(p12) + S(p13) = S(p1) + S(p123)

Remark 10.23. This is related to “quantum channels”. The partial trace is replaced

by the “completed positive trace preserving maps”. 0

Idea of Proof. The Golden-Thompsen inequality tells us that
Tr(eP) < Tr(ee?).

which is equivalent to
Tr(e™ A B) < Tr(AB)
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Lieb’s extension
[oe)

1 1
T 1nA+lnB—lnC<T /A B dt
e g C+t CH+t
0
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