
Mathematical Quantum Mechanics
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Chapter 1

Review of Analysis

1.1 Measure Theory

In measure theory the basic object is a measure space (Ω,Σ, µ) consisting of a (measure)

space Ω, a Sigma-algebra Σ, and a measure µ.

Definition 1.1 (Sigma-Algebra). A Sigma-algebra Σ is a collection of subsets of Ω such

that

1) ∅,Ω ∈ Σ,

2) if A ∈ Σ then AC := Ω \ A ∈ Σ,

3) if (An)∞n=1 ⊂ Σ then
⋃∞
n=1An ∈ Σ.

If A ∈ Σ, A is called measurable. �

Definition 1.2 (Measure). A measure µ is a function Σ→ [0,∞] such that

1) µ(A) > 0 for all A ∈ Σ,

2) if (An)∞n=1 ⊂ Σ, such that An ∩ Am = ∅ if n 6= m, then

µ

(
∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

�
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8 CHAPTER 1. REVIEW OF ANALYSIS

Example 1.3. The most common example of a measure space is Ω = Rd, Σ being the

Lebesgue measurable sets, and µ being the Lebesgue measure.

The properties characterising this measure space are:

1) Σ contains all open and closed sets,

2) For all A ∈ Σ and ε > 0, there exists an open set B such that A ⊂ B and

µ(B \ A) < ε (Outer Regularity).

For all A ∈ Σ, there exists a sequence of closed/compact sets (Bn)n such that

Bn ⊂ A, and

µ

(
A \

∞⋃
n=1

Bn

)
= 0,

i.e. A =
⋃∞
n=1Bn almost everywhere (a.e.) (Inner Regularity).

3) Completeness : If A ∈ Σ and µ(A) = 0, then for all B ⊂ A, B ∈ Σ and

µ(B) = 0.

4) For all x ∈ Rd, and all A ∈ Σ, A + x ∈ Σ and µ(A + x) = µ(A) (Translation

Invariance).

For all λ ∈ R, and all A ∈ Σ, λA ∈ Σ and µ(λA) = |λ|dµ(A) (Dilation).

5) Normalisation : The unit cube has measure 1, i.e. µ
(
[0, 1]d

)
= 1.

Definition 1.4 (Measurable Functions). Given a measure space (Ω,Σ, µ), a function

f : Ω→ [0,∞] is called measurable iff

�

f−1((t,∞]) =
{
x ∈ Ω

∣∣ f(x) > t
}
∈ Σ

for all t > 0. These sets are called level sets.

Or equivalently
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� f(x) = limn→∞ fn(x), where fn is a step function, i.e.

fn(x) =
I∑
i=1

λiχAi

where λi ∈ R, Ai ∈ Σ and

χAi(x) =

1, if x ∈ Ai

0, otherwise
,

or

� (if Ω = Rd) f(x) = limn→∞ fn(x), where fn is a really simple function, i.e. fn(x) =∑I
i=1 λiχAi where λi > 0 and Ai are cubes.

In general a function f : Ω → C can be split into f = f1 − f2 + if3 − if4 with

fi : Ω→ [0,∞]. Then f is measurable iff all fi are. �

Remark 1.5 (Reminder of Riemann Integral). The Riemann integral can only be de-

fined for functions that are continuous up to a countable set. �

Definition 1.6 (Integration). For any measurable function f : Ω → [0,∞] we define

its Lebesgue integral to be

∫
Ω

f(x)dµ(x) :=

∞∫
0

µ
({
x ∈ Σ

∣∣ f(x) > t
})

dt

where the right-hand-side is interpreted as a Riemann integral. This is well-defined as

t 7→ µ
({
x ∈ Σ

∣∣ f(x) > t
})

is monotone decreasing, and thus it is continuous up to a

countable set (Exercise 1.1).

For a measurable function f : Ω→ C we define∫
Ω

f(x)dµ(x) :=

∫
f1 −

∫
f2 + i

∫
f3 − i

∫
f4

which makes sense iff
∫
fi <∞ for all i ∈ {1, . . . , 4}. In this case we call f integrable.
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Equivalently, f is integrable iff |f | is measurable and
∫
|f | <∞. �

1.2 Fundamental Theorems on Integration

Theorem 1.7 (Monotone Convergence). If (fn)∞n=1 is a sequence of measurable, real,

and integrable functions, fn(x) ↑ f(x) (i.e. f(x) > fn+1(x) > fn(x) for all n ∈ N) for

a.e. x (i.e. up to a set of measure 0), then∫
Ω

f(x)dµ(x) = lim
n→∞

∫
Ω

fn(x)dµ(x).

(which holds even when both sides are +∞). �

Theorem 1.8 (Dominated Convergence). If (fn)∞n=1 is a sequence of measurable and

integrable functions (fn : Ω → C), fn(x)
n→∞−−−→ f(x) for a.e. x, and there exists an

integrable function G, such that |fn(x)| 6 G(x) for a.e. x. Then∫
Ω

f(x)dµ(x) = lim
n→∞

∫
Ω

fn(x)dµ(x)

(and both sides are finite). �

Remark 1.9. Under the same conditions as in the Theorem 1.8 we also have∫
Ω

∣∣fn(x)− f(x)
∣∣dµ(x)

n→∞−−−→ 0.

This is stronger than the previous convergence theorem as∣∣∣∣∣∣
∫
Ω

f(x)dµ(x)−
∫
Ω

fn(x)dµ(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

(
f(x)− fn(x)

)
dµ(x)

∣∣∣∣∣∣ 6
∫
Ω

∣∣f(x)− fn(x)
∣∣dµ(x).

�



1.2. FUNDAMENTAL THEOREMS ON INTEGRATION 11

Remark 1.10 (“Inverse” of Dominated Convergence). If (fn)∞n=1 is a sequence of inte-

grable functions, f integrable, and∫
Ω

∣∣fn − f ∣∣dµ n→∞−−−→ 0

then there exists a subsequence (fnk)k of (fn)n such thatfnk(x)
k→∞−−−→ f(x), for a.e. x

|fnk(x)| 6 G(x), for a.e. x

for an integrable function G. �

Theorem 1.11 (Fatou’s Lemma). If (fn)n is a sequence of integrable functions, fn > 0,

fn(x)
n→∞−−−→ f(x) for a.e. x. Then

lim inf
n→∞

∫
Ω

fn(x)dµ(x) >
∫
Ω

f(x)dµ(x)

�

Remark 1.12 (Notation).

lim
n→∞

an = a0 :⇐⇒ ∀ε > 0 ∃Nε ∈ N∀n > Nε : |an − a0| < ε

lim inf
n→∞

an := lim
n→∞

inf
m>n

am

lim sup
n→∞

an := lim
n→∞

sup
m>n

am

lim inf
n→∞

an > a0 ⇐⇒ ∀ε > 0∃Nε ∈ N ∀n > Nε : an − a0 > −ε

lim sup
n→∞

an 6 a0 ⇐⇒ ∀ε > 0∃Nε ∈ N ∀n > Nε : an − a0 6 ε

�
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Theorem 1.13 (Brezis-Lieb Refinement of Fatou’s Lemma). Assume that (fn)n is a

sequence of integrable functions, fn → f for a.e. x, f integrable. Then∫ ∣∣|fn| − |f | − |fn − f |∣∣dµ n→∞−−−→ 0

Consequently, ∫
|fn| −

∫
|f | −

∫
|fn − f |

n→∞−−−→ 0.

and if fn → f a.e. and
∫
|fn| →

∫
|f | then

∫
|fn − f | → 0. �

Proof. |fn| − |fn − f |
n→∞−−−→ |f | a.e. and

∣∣|fn| − |fn − f |∣∣ 6 |f |
with |f | being integrable. The assertion then follows from the dominated convergence The-

orem 1.8. q.e.d.

Theorem 1.14 (Approximation by Continuous Functions). If f : Rd → C is an in-

tegrable function, then there exists a sequence of continuous functions with compact

support (i.e. fn
∣∣
KC ≡ 0 for some compact set K) (fn)n ⊂ Cc

(
Rd
)

such that∫
Rd

|fn − f |dx
n→∞−−−→ 0.

�

1.3 Lp Spaces

Definition 1.15 (Lp Space). Let (Ω,Σ, µ) be a measure space. For all 1 6 p 6∞ we

define

Lp(Ω) :=
{
f : Ω→ C

∣∣ f is measurable, ‖f‖Lp <∞
}
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where

‖f‖Lp :=


(∫

Ω

|f |pdµ
)1/p

, if p <∞

ess supx∈Ω |f(x)|, if p =∞.

Here

ess sup
x∈Ω

|f(x)| := inf
{
λ ∈ R

∣∣ |f(x)| 6 λ for a.e. x
}
.

Convergence with respect to the topology generated by ‖·‖Lp is called norm convergence

or strong convergence.

�

Remark 1.16 (Fundamental Results for Lp). All fundamental results for L1 extend to

Lp for all 1 6 p <∞.

1) (Monotone Convergence for Lp) If (fn)n ⊂ Lp(Ω) is a sequence of a.e. increasing

functions, converging a.e. to f then∫
|fn|p

n→∞−−−→
∫
|f |p.

2) (Dominated Convergence) If (fn)n ⊂ Lp(Ω) is a sequence functions converging

a.e. to f and for all n ∈ N |fn| 6 G ∈ Lp(Ω), then∫
|fn|p

n→∞−−−→
∫
|f |p and

∫
|fn − f |p

n→∞−−−→ 0.

Sketch of Proof. |fn − f |p
n→∞−−−→ 0 a.e. and

|fn − f |p 6 (|fn|+ |f |)p 6 2pGp ∈ L1.

Then the assertion follows from the standard dominated convergence Theorem 1.8.

�

3) (Fatou) If (fn)n ⊂ Lp(Ω) is a sequence of non-negative functions, converging a.e.

to f , then ∫
|f |p 6 lim inf

n→∞

∫
|fn|p



14 CHAPTER 1. REVIEW OF ANALYSIS

4) If (fn)n ⊂ Lp(Ω) is a sequence functions converging a.e. to f and for all n ∈ N∫
|fn|p 6 C, then ∫ ∣∣|fn|p − |f |p − |fn − f |p∣∣ n→∞−−−→ 0.

�

Definition 1.17 (Dual Space). For any Banach Space X its dual space is

X∗ :=
{
L : X −→ C

∣∣L is linear and continuous
}
.

This is a Banach space with norm

‖L‖X∗ := sup
‖f‖X61

|L(f)|

�

Remark 1.18 (Properties of Lp(Ω)). 1) Lp(Ω) is a Banach space with norm ‖ · ‖Lp
for all 1 6 p 6∞, i.e.

� ‖f‖Lp > 0 for all f ∈ Lp(Ω) and ‖f‖Lp = 0 ⇐⇒ f = 0 (a.e. x),

� ‖λf‖Lp = |λ|‖f‖Lp for all λ ∈ C,

� ‖f + g‖Lp 6 ‖f‖Lp + ‖g‖Lp (triangle inequality),

and it is complete, i.e. if (fn)n ⊂ Lp(Ω) is a Cauchy sequence, i.e.

limn,m→∞ ‖fn − fm‖Lp = 0, then there exists a f ∈ Lp(Ω) such that

‖f − fn‖Lp
n→∞−−−→ 0.

2) (Hölder’s Inequality) If p, q ∈ [1,∞] and 1
p

+ 1
q

= 1 (such p, q are called dual

powers) then

‖fg‖L1 6 ‖f‖Lp‖g‖Lq

for all f ∈ Lp and g ∈ Lq. More generally if 1
p1

+ 1
p2

+ · · · 1
pn

= 1, then

‖f1f2 · · · fn‖L1 6 ‖f1‖Lp1‖f2‖Lp2 · · · ‖fn‖Lpn .
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3) (Dual of Lp)

(Lp(Ω))∗ = Lq(Ω)

where 1
p

+ 1
q

= 1 for all 1 6 p <∞. Note that (L∞(Ω))∗ ) L1(Ω).

This means that for all L ∈ (Lp(Ω))∗ there exists a unique g ∈ Lq(Ω) such that

for all f ∈ Lp(Ω)

L(f) =

∫
fg.

Moreover,

‖L‖(Lp)∗ = sup
‖f‖Lp61

∣∣∣∣∫ fg

∣∣∣∣ = ‖g‖Lq .

�

Sketch of Proof of (2) & (3). By Young’s inequality for all a, b > 0, 1
p

+ 1
q

= 1 with 1 < p <

∞
ab 6

ap

p
+
bq

q
.

A stronger version of this inequality asserts that

ab = inf
ε>0

{
(εa)p

p
+

(ε−1b)q

q

}
.

In particular, we have

|fg| 6 |εf |
p

p
+
|ε−1g|q

q

pointwise. Thus, ∫
|fg| 6 (ε‖f‖Lp)p

p
+

(ε−1‖g‖Lq)q

q

for all ε > 0. The infimum of the right-hand-side is equal to ‖f‖Lp‖g‖Lq . This yields Hölder’s

inequality.

Consequently,

sup
‖f‖Lp61

∣∣∣∣∫ fg

∣∣∣∣ 6 ‖g‖Lq
On the other hand, for all g ∈ Lq, g 6= 0 we can define

f :=
g|g|q−2(∫
|g|q
)1/p
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then ‖f‖Lp = 1 and ∫
fg =

(∫
|g|q
)1/q

= ‖g‖Lq .

q.e.d.

Definition 1.19 (Weak Convergence). Let 1 < p <∞. Then a sequence (fn)n ⊂ Lp(Ω)

is said to converge weakly in Lp

fn
n→∞−−−⇀ f

iff for all g ∈ Lq(Ω), with 1
p

+ 1
q

= 1,∫
fng

n→∞−−−→
∫
fg.

�

Theorem 1.20 (Banach-Alaoglu). Let 1 < p < ∞. If (fn)n is a bounded sequence in

Lp (i.e. ‖fn‖Lp 6 C for all n ∈ N), then there exists a subsequence (fnk)k such that

fnk
k→∞−−−⇀ f in Lp. �

Theorem 1.21 (Banach-Steinhaus, Uniform Boundedness Principle). If fn
n→∞−−−⇀ f in

Lp, then (fn)n is bounded in Lp. �

Remark 1.22. Strong convergence (i.e. convergence in norm) implies weak conver-

gence. �

Example 1.23. Let f, ϕ ∈ Cc(Rd). Define

fn(x) := f(x) + ϕ(x+ xn)

where |xn| → ∞. Then for |xn| large enough∫
|fn|p =

∫
|f |p +

∫
|ϕ|p ∴ ‖fn − f‖Lp = ‖ϕ‖Lp 6= 0.
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Thus fn 6→ f strongly in Lp. But fn ⇀ f weakly. Indeed, for all g ∈ Lq(Ω)∫
fng −

∫
fg =

∫
ϕ(x+ xn)g(x)dµ(x)

n→∞−−−→ 0

by the dominated convergence Theorem 1.8 and approximating g by a function gε ∈ Lqc
with ‖g − gε‖q < ε.

Proof of Theorem 1.20. For all g ∈ Lq,
(∫

fng
)
n

is a bounded sequence in C as∣∣∣∣∫ fng

∣∣∣∣ 6 ‖fn‖Lp‖g‖Lq 6 C‖g‖Lq .

This means that there exists a subsequence (fnk)k such that
∫
fnkg converges for k →∞.

Now take a sequence (gm)∞m=1 in Lq(Ω). Then we can choose a subsequence (fnk)k such that∫
fnkgm converges as k → ∞ for all m ∈ N, which can be done by a “Cantor Diagonal

Argument”.

Taking the subsequence
(
fnk1

)
k1

constructed for g1, we may extract a subsequence of this

sequence
(
fnk2

)
k2

converging also for g2. Doing this for all m ∈ N we obtain the double

sequence
(
fnkm

)
(k,m)∈N2 . Then for the sequence

(
fnkk

)
k∈N

, the integrals
∫
fnkkgm converge

as k → ∞ for all m ∈ N, since
(
fnkk

)
k>m

is a subsequence of the convergent sequence(
fnkm

)
k>m

, hence it is itself convergent.

Using the fact that Lq(Ω) is separable, i.e. that there exists a sequence (gm)∞m=1 ⊂ Lq(Ω)

that is dense in Lq(Ω). (Separability follows from the approximation of Lp functions by step

functions or continuous functions with compact support. L∞(Ω) is not separable, hence the

assertion fails in that case.)

With this choice of (gm)m we can define a linear functional L : Lq(Ω)→ C via

L(gm) := lim
k→∞

∫
fnkkgm.

By the above this is well-defined, and as (gm)m is dense this functional can be uniquely

extended to all of Lq(Ω) if it is bounded on (gm)m. This is the case as

|L(gm)| = lim
k→∞

∣∣∣∣∫ fnkkgm

∣∣∣∣ 6 lim
k→∞

∥∥∥fnkk∥∥∥Lp‖gm‖Lq 6 C‖gm‖Lq .

Thus L ∈ (Lq(Ω))∗ and there exists a unique f ∈ Lp(Ω) such that L(g) =
∫
fg for all g ∈ Lq.
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By this, we have for all gm

lim
k→∞

∫
fnkkgm = L(gm) =

∫
fgm.

For an arbitrary g ∈ Lq(Ω) choose a subsequence (gml)l converging to g strongly. Then∣∣∣∣∫ fnkkg −
∫
f

∣∣∣∣ 6 ∣∣∣∣∫ fnkk (g − gml)
∣∣∣∣+

∣∣∣∣∫ fnkkgml −
∫
fgml

∣∣∣∣+

∣∣∣∣∫ f(gml − g)

∣∣∣∣ 6
6
∥∥∥fnkk∥∥∥Lp‖g − gml‖Lq +

∣∣∣∣∫ fnkkgml −
∫
fgml

∣∣∣∣+
∥∥∥fnkk∥∥∥Lp‖g − gml‖Lq 6

6 C‖g − gml‖Lq +

∣∣∣∣∫ fnkkgml −
∫
fgml

∣∣∣∣+ C‖g − gml‖Lq
k→∞−−−→

−→ 2C‖g − gml‖Lq

The right-hand side can now be made arbitrarily small (by choosing l large enough), hence∣∣∣∫ fnkkg − ∫ fg∣∣∣ k→∞−−−→ 0. Thus, indeed

fnkk
k→∞−−−⇀ f.

q.e.d.

Definition 1.24. Let Ω = Rd, f, g measurable and define their convolution for each

x ∈ Rd, if it exists, to be

(f ∗ g)(x) =

∫
Rd

f(x− y)g(y)dy.

�

Remark 1.25. f ∗ g = g ∗ f and (f ∗ g) ∗ h = f ∗ (g ∗ h). �

Theorem 1.26 (Young’s Inequality). Let 1 6 p, q, r 6 ∞. If f ∈ Lp, g ∈ Lq, then

f ∗ g ∈ Lr with

1 +
1

r
=

1

p
+

1

q
.
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and ‖f ∗ g‖Lr 6 ‖f‖Lp‖g‖Lq . �

Remark 1.27. The Young inequality is equivalent to∣∣∣∣∣∣
∫
Rd

∫
Rd

f(x)g(x− y)h(y)dxdy

∣∣∣∣∣∣ 6 ‖f‖Lp‖g‖Lq‖h‖Lr′
where

1

p
+

1

q
+

1

r′
= 2

and 1
r

+ 1
r′

= 1. �

Theorem 1.28 (Approximation by Convolution). Let 1 6 p <∞ and f ∈ Lp(Rd). Let

g ∈ L1(Rd),
∫
g = 1 and for ε > 0, gε = g

(
x
ε

)
1
εd

, i.e.
∫
gε = 1.

Then gε ∗ f
ε→0−−→ f strongly in Lp(Rd) �

Corollary 1.29. For all Lp(Rd), 1 6 p < ∞ there exists a sequence (fn)n ∈ C∞c (Rd),

‖fn − f‖Lp → 0. �

Proof. By approximation, we may assume that f ∈ Cc(Rd) which we shall prove later.

For simplicity, we assume that g has compact support. Then

∣∣(gε ∗ f)(x)− f(x)
∣∣ =

∣∣∣∣∣∣
∫
Rd

gε(y)f(x− y)dy −
∫
Rd

gε(y)f(x)dy

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫
Rd

gε(y)
(
f(x− y)− f(x)

)
dy

∣∣∣∣∣∣ 6
6 sup

z∈supp gε

|f(x− z)− f(x)|
∫
Rd

|gε(y)|dy 6

6 sup
|z|6Rε

|f(x− z)− f(x)|‖g‖L1
ε→0−−→ 0

where supp g ⊂ BR(0). Because f has compact support it is uniformly continuous, hence

the last limit can be taken uniformly for all x ∈ Rd.
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Thus, ‖gε ∗ f − f‖∞
ε→0−−→ 0. Since f, g have compact support it follows that gε ∗ f has one as

supp(gε ∗ f) ⊂ supp gε + supp f ⊂ BεR(0) + supp f ⊂ BR(0) + supp(f).

for ε 6 1. Thus, ‖gε ∗ f − f‖Lr → 0 for all 1 6 r 6∞ as

‖f‖Lr 6 (µ(supp f))
1
r
− 1
p‖f‖Lp ∴ ‖f‖Lr 6 (µ(supp f))

1
r ‖f‖L∞

which follows from Hölder’s inequality.

To remove the assumption that f and g have compact support we use sequences (fn)n, (gn)n ⊂
Cc such that

‖fn − f‖Lp
n→∞−−−→ 0, ‖gn − g‖L1

n→∞−−−→ 0

and utilise Young’s inequality ‖f ∗ g‖Lp 6 ‖f‖Lp‖g‖L1 to estimate

f ∗ gε − f = (fn ∗ gε − fn) + (f − fn) ∗ gε + (fn − f),

where the third vanishes by assumption and the second term vanishes by both Young’s

inequality and our assumption as n → ∞, and the first term goes to 0 by the above as

ε→ 0.

Concerning g we have the similar estimate

f ∗ gε − f = (f ∗ gε,n − f) + f ∗ (gε − gε,n)

the second term vanishes by Young’s inequality and our assumption as n→∞ and the first

term vanishes as ε→ 0 per our assumption.

For the corollary, we can choose g ∈ C∞c ,
∫
g = 1 and if f ∈ Cc(Rd), then gε ∗ f ∈

C∞c (Rd). q.e.d.

Theorem 1.30 (Hardy - Littlewood - Sobolev Inequality).∣∣∣∣∣∣
∫
Rd

∫
Rd

f(x)g(y)

|x− y|λ
dxdy

∣∣∣∣∣∣ 6 C‖f‖Lp‖g‖Lq

for 1
p

+ 1
q

+ λ
d

= 2, for all 0 < λ < d, and C = C(p, q, λ, d) independent of f, g. �
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Remark 1.31. The HLS inequality does not come from Young’s inequalty as for

h(z) = 1
|z|λ ∫

|h(z)|r =

∫
|h(z)|

d
λ =

∫
Rd

1

|z|d
dz = +∞

This inequality is also called the “weak Young inequality” as it involves a weak norm

of h. �

Proof. We shall use the “Layer-cake” representation

∫
Rd

|f(x)|p = p

∞∫
0

h1(a)ap−1da

where

h1(a) =
∣∣{|f(x)| > a}

∣∣ =

∫
Rd

1{|f(x)|>a}dx

and ∫
Rd

|g(x)|p = q

∞∫
0

h2(b)bq−1db, h2(b) =

∫
Rd

1{|g(y)|>b}dy.

Without loss of generality we may assume that ‖f‖Lp = ‖g‖Lq = 1 (otherwise rescale the

functions). For the left-hand-side, we use

|f(x)| =
∞∫

0

1{|f(x)|>a}da

|g(y)| =
∞∫

0

1{|g(y)|>b}db

1

|x− y|λ
=

∞∫
0

1{ 1

|x−y|λ
>c}dc = λ

∞∫
0

1{|x−y|<c}
dc

cλ+1

where the substitution c→ c−λ was used for the last equality. Using this, the left-hand-side

takes the form∣∣∣∣∣∣
∫
Rd

∫
Rd

f(x)g(y)

|x− y|λ
dxdy

∣∣∣∣∣∣ = λ

∞∫
0

∞∫
0

∞∫
0

∫
Rd

∫
Rd

1{|f(x)|>a}1{|g(y)|>b}1{|x−y|<c}
cλ+1

dxdy

dadbdc.
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We shall denote the function within the parentheses as I(a, b, c). Note that we may arbitrarily

exchange by Tonelli’s theorem all the integrals in this expression as the integrand is positive.

Now we use a trick: By ignoring one of the three characteristic function we can estimate

I(a, b, c) 6
∫
Rd

∫
Rd

1{|f(x)|>a}1{|g(y)|>b}

cλ+1
dxdy =

h1(a)h2(b)

cλ+1

I(a, b, c) 6
∫
Rd

∫
Rd

1{|f(x)|>a}1{|x−y|<c}
cλ+1

dxdy = h1(a)

∫
Rd

1{|y|<c}
cλ+1

dy = h1(a)|B1|
cd

cλ+1

I(a, b, c) 6 h2(b)|B1|
cd

cλ+1

where |B1| is the volume of the unit ball. Thus,

I(a, b, c) 6 C
min{h1(a)h2(b), h1(a)cd, h2(b)cd}

cλ+1
,

where C is some constant.

Recalling that ∣∣∣∣∣∣
∫
Rd

∫
Rd

f(x)g(y)

|x− y|λ
dxdy

∣∣∣∣∣∣ 6 λ

∞∫
0

∞∫
0

∞∫
0

I(a, b, c)dadbdc

We have

∞∫
0

I(a, b, c)dc =

∫
h1(a)>cd

I(a, b, c)dc+

∫
h1(a)6cd

I(a, b, c)dc 6

6
∫

h1(a)>cd

h2(b)cd

cλ+1
dc+

∫
h1(a)6cd

h1(a)h2(b)

cλ+1
dc =

= h2(b)

∫
06c<h1(a)

1
d

cd−λ−1dc+ h1(a)h2(b)

∫
h1(a)

1
d6c

1

cλ+1
dc =

=
h2(b)

(
h1(a)

1
d

)d−λ
d− λ

+
1

λ
(
h1(a)

1
d

)λh1(a)h2(b) 6 Ch1(a)
d−λ
d h1(b)

Similarly we have
∞∫

0

I(a, b, c)dc 6 Ch1(a)h2(b)
d−λ
d .
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Thus
∞∫

0

I(a, b, c)dc 6 C min
{
h1(a)1−λ

dh2(b), h1(a)h2(b)1−λ
d

}
.

We want to estimate the a- and b-integrals in terms of

1 =

∫
Rd

|f(x)|pdx = p

∞∫
0

h1(a)ap−1da

1 =

∫
Rd

|g(y)|qdy = q

∞∫
0

h2(b)bq−1db

Using these identities we get

∞∫
0

∞∫
0

∞∫
0

I(a, b, c)dadbdc 6 C

∞∫
0

∞∫
0

min
{
h1(a)1−λ

dh2(b), h1(a)h2(b)1−λ
d

}
dadb 6

6 C

∫∫
ap>bq

· · · dadb+ C

∫∫
ap<bq

· · · dadb 6

6 C

∫∫
b6a

p
q

h1(a)h2(b)1−λ
d dadb+ C

∫∫
a
p
q <b

h1(a)1−λ
dh2(b)dadb

The first term can be estimated by∫∫
b6a

p
q

h1(a)h2(b)1−λ
d dadb =

∫∫
b6a

p
q

h1(a)ap−1 1

ap−1
h2(b)1−λ

d dadb

We need ∫
b6a

p
q

1

ap−1
h2(b)1−λ

d db 6 C

and we conclude. This is done by

∫
b6a

p
q

1

ap−1
h2(b)1−λ

d db 6 a1−p

 ∫
b6a

p
q

h2(b)bq−1db


1−λ

d

︸ ︷︷ ︸
61

 a
p
q∫

0

1

bξ
db


λ
d

= const
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Here Hölder’s inequality was used in the first inequality and

(q − 1)

(
1− λ

d

)
− ξλ

d
= 0.

q.e.d.

Remark 1.32. Another application of the Layer cake representation is the pqr theorem,

i.e. let p < q < r, (fn)n ⊂ Lp, Lq, Lr and ‖fn‖Lp , ‖fn‖Lr 6 C and ‖fn‖Lq > ε > 0 then

there exists a subsequence such that fn ⇀ f 6= 0. (Exercise 2.3.) �

1.4 Fourier Transform

For all f ∈ L1(Rd) we may define the Fourier transform to be

f̂(k) =

∫
Rd

f(x)e−2πik·xdx

where k · x =
∑d

j=1 kjxj.

Theorem 1.33 (Plancherl). � For all f ∈ L1(Rd) ∩ L2(Rd), ‖f̂‖L2 = ‖f‖L2.

� We can extend the Fourier transform to L2(Rd) as an isometry, i.e. for all f ∈
L2(Rd)

‖f‖L2 = ‖f̂‖L2

and therefore for all f, g ∈ L2(Rd)∫
Rd

f̂ ĝ =

∫
Rd

fg.

�

Proposition 1.34 (Properties of the Fourier Transform). 1) (Inverse formula) Let

f̌(x) =
∫
Rd
f(k)e2πik·xdk, then

f =
ˇ̂
f = ˆ̌f
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2) (Convolution) f̂ ∗ g(k) = f̂(k)ĝ(k).

3) (Fourier vs. Derivatives) Let Dα = ∂α1
x1
· · · ∂αdxd where (x1, . . . , xd) ∈ Rd and α =

(α1, . . . , αd) ∈ Nd
0. Then

D̂αf(k) = (2πik)αf̂(k)

where (2πik)α =
∏d

j=1(2πikj)
αj , for k = (k1, . . . , kd) ∈ Rd.

4)

ê−π|·|2(k) = e−π|k|
2

�

Proof. 2)

f̂ ∗ g(k) =

∫
Rd

(f ∗ g)(x)e−2πik·xdx =

∫
Rd

∫
Rd

f(y)g(x− y)e−2πik·xdxdy =

=

∫
Rd

∫
Rd

f(y)e−2πik·yg(x− y)e−2πik·(x−y)dxdy =

=

∫
Rd

f(y)e−2πik·ydx

∫
Rd

g(z)e−2πik·zdz = f̂(k)ĝ(k)

3)

∂̂x1f(k) =

∫
Rd

(∂x1f)(x)e−2πik·xdx = −
∫
Rd

f(x)∂x1

(
e−2πik·x)dx =

= −
∫
f(x)(−2πik1)e−2πik·xdx = (2πik1)f̂(k).

q.e.d.

1.5 Sobolev Space
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Definition 1.35. The mth Sobolev Space is defined to be the Banach space

Hm :=

{
f ∈ L2(Rd)

∣∣∣∣∣ ∀α ∈ Nd : |α| =
d∑
j=1

αj 6 m =⇒ Dαf ∈ L2(Rd)

}
=

=
{
f ∈ L2(Rd)

∣∣∣ (1 + |k|2)
m
2 f̂(k) ∈ L2(Rd)

}
with norm

‖f‖Hm =

√∑
|α|6m

‖Dαf‖2
L2 .

An equivalent norm is given by√∑
`6m

∥∥∥(1 + |k|2)
`
2 f̂
∥∥∥2

L2
.

�

Remark 1.36. The derivatives used in this definition are so-called “distributional

derivatives”. They coincide with the normal derivative if the function is differentiable

and shall be discussed further in section 3.1. �

1.6 Hilbert Space

Definition 1.37. A complex Hilbert space H is a Banach space equipped with an

inner product 〈·, ·〉 that is anti-linear in its first argument and linear in its second, i.e.

〈λf, αg〉 = λα 〈f, g〉. The corresponding Banach space norm is given by

‖f‖H =
√
〈f, f〉.

�

Definition 1.38 (Orthogonality). f is said to be orthogonal to g, f ⊥ g, iff 〈f, g〉 = 0.

An orthonormal family (fn)n is a sequence of functions in H such that 〈fn, fm〉 = δnm,

where δnm is the Kronecker delta.

An orthonormal basis (fn)n is a sequence of function in H that is an orthonormal
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family and is complete, i.e. for all f ∈H

(∀n ∈ N : f ⊥ fn) ⇐⇒ f = 0.

�

Remark 1.39. For all Hilbert spaces there exists an orthonormal basis (by Zorn’s

lemma). In this lecture, we will always consider separable Hilbert spaces, i.e. Hilbert

spaces with a countable basis. �

Theorem 1.40 (Parseval). If (un)∞n=1 is an ONB of H , then for all u ∈H

‖u‖2
H =

∞∑
n=1

| 〈un, u〉 |2

Moreover,

u =
∞∑
n=1

〈un, u〉un

�

Corollary 1.41 (Bessel’s Inequality). If (un)n∈N is an orthonormal family, then for all

u ∈H

‖u‖2 >
∞∑
n=1

| 〈un, u〉 |2

�

Theorem 1.42 (Riesz Representation Theorem). Let L ∈H ∗ be a bounded (or con-

tinuous) linear functional L : H → C, then there exists a unique v ∈H such that

L (u) = 〈v, u〉

for all u ∈H . �
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Definition 1.43 (Weak Convergence). A sequence (un)n ⊂H converges weakly to u,

i.e. un
n→∞−−−⇀ u, iff for all v ∈H

〈v, un〉
n→∞−−−→ 〈v, u〉 .

�

Remark 1.44. Any separable Hilbert space is isometric to L2(R), i.e. there exists a

unitary operator T : H → L2(R), that is T is linear and for all u, v ∈H

〈u, v〉 = 〈Tu, Tv〉L2 .

As a consequence, we have the Banach-Alaoglu theorem, Theorem 1.20, i.e. if (un)n is

bounded in H then there exists a subsequence such that unk
k→∞−−−⇀ u weakly in H .

The Banach-Steinhaus theorem, Theorem 1.21, also holds for all separable Hilbert

spaces by the same argument. �



Physics Introduction

Remark 1.45. For more detailed information on this section see: http://www.mathematik.

uni-muenchen.de/~nam/notes_ws18_19_1.pdf. �

Postulates of Quantum Mechanics

� (State): Described by an element ψ ∈H of a Hilbert space H .

� (Properties): Given by “Observable” linear operators on H

� (Measurement Value a): Eigenvalues of A

� (Probability for a):
∑
|a,i〉∈ker(A−aI) | 〈a, i |ψ〉 |2, where |a, i〉 form an orthonormal basis

of the eigenvectors of A corresponding to a, i.e |a, i〉 ∈ ker(A− a). Using this basis the

measurement probability can also be written as

∑
|a,i〉∈ker(A−aI)

| 〈a, i |ψ〉 |2 =
∑
i

= 〈ψ | a, i〉 〈a, i |ψ〉 =
∑
i

〈ψ |P |ψ〉 =
∑
i

‖P ||ψ〉 ‖2

where P :=
∑

i |a, i〉 〈a, i| is the projector onto the subspace of a eigenvectors.

� (Measurement): After the measurement the new state is given by an eigenvector of a

� (Dynamics (I)): d
dt
|ψ〉 = −iHψ,

� (Dynamics (II)): |ψ, t〉 = Ut |ψ, 0〉.

The last two points are equivalent by Stones theorem.

29

http://www.mathematik.uni-muenchen.de/~nam/notes_ws18_19_1.pdf
http://www.mathematik.uni-muenchen.de/~nam/notes_ws18_19_1.pdf
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Postulates of Classical Mechanics

In terms of point particles (the classical equivalent of pure states, i.e. wave functions):

� (State): Described by an element (x, p) ∈ T ∗Q in phase space.

� (Properties): Given by observables A, i.e. functions on T ∗Q.

� (Measurement Value a): A(x, p) = a

� (Probability for a): If A(x, p) = a then probability is 1, and otherwise it is 0.

� (Measurement): After the measurement the system is in the same state.

� (Dynamics): d
dt

(x, p) = XH .

In terms of probability distributions (the classical equivalent of mixed states, i.e. density

matrices, incorporating classical as well as quantum mechanical lack of knowledge):

� (State): Described by a function ρ(x, p) on T ∗Q phase space.

� (Properties): Given by observables A, i.e. functions on T ∗Q.

� (Measurement Value a): A(x, p) = a

� (Probability for a): P (a, ρ) =
∫
{A(x,p)=a} ρ(x, p)dxdp.

� (Measurement): After the measurement the new state is given
ρ(x)1{A(x,p)=a}

P (a,ρ)
.

� (Dynamics): d
dt
ρ = £XHρ = {H, ρ}.

Strange Observations

Assume that particles only have the properties

� C (colour): red/green (r/g),

� S (status): hard/soft (h/s).
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Further assume that we have two apparatuses a colouriser Ĉ which takes as input a particle

of any type and may produce a red or green. Analogously we have the same for the status

Ŝ.

Suppose that we our experiments yield the following uniform distributions1

P(→ Ĉ) =
1

2
, P(→ Ĉ → Ŝ) =

1

4
, P(→ Ĉ → Ŝ → Ĉ) =

1

8

However, we also measure

P(→ Ĉ) =
1

2
, PĈ2(rr) = PĈ2(gg) =

1

2
,PĈ2(rg) = PĈ2(gr) = 0,

PŜĈ2(hrr) = PŜĈ2(srr) = PŜĈ2(hgg) = PŜĈ2(sgg) =
1

4
.

and the other probabilities of the last measurement are 0.

This is the content of the Stern-Gerlach experiment.

EPR - Einstein, Podolski, Rosen (1934)

They made two assumptions of locality and reality and took QM on face value and a system

of 2 particles in 1 dimension, i.e.

ψ(a,b)(x1, x2) ∈H a ⊗H b = L2(R3)⊗ L2(R3) = L2(R6)

Suppose that ψ = d(x1 − x2 − L)d(p1 + p2), where d is an almost δ function.

If we measure x1, we know also x2 = x1 − L and similarly if we measure p1 then we know

that p2 = −p1.

Bell Inequality

Suppose that we have reality and locality. Imagine two particles are fully determined by λ, µ

and measurements a, b, c such that results of the measurement are a(λ), b(λ), c(λ), a(µ), . . . ,

are functions of λ,µ.

Suppose that we have a source of particles producing λj,µj, . . . .

Say that a, b, c are polarisers in direction α,β,γ respectively.

1Which is the case if the eigenbases of Ŝ and Ĉ are mutually unbiased.
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Suppose that our apparatus gives only ±1. Suppose that we have a source of pair (λj,µj),

such that c(λj) = c(µj) then

1− b(µj)c(λj) = a(λj)(b(µj)− c(µj)), or 1− b(µj)c(λj) = −a(λj)(b(µj)− c(µj))

Taking the average over many pairs j = 0, 1, . . . , N − 1 we get the inequalities

1− 〈bc〉 > max{〈a[b− c]〉 ,−〈a[b− c]〉}

i.e.

1− 〈bc〉 > | 〈ab〉 − 〈ac〉 |.

Quantum mechanics violates this inequality.



Chapter 2

Principles of Quantum Mechanics

Basic Setting of Quantum Mechanics

� A quantum state is a vector in a Hilbert space H ,

� Observables are (bounded or unbounded) operators on H ,

� The Hamiltonian H is a self-adjoint operator, with 〈ψ,Hψ〉 representing the energy of

the state ψ,

� The Schrödinger equation:

∂tψ(t) = −iHψ(t)

� Mixed states: γ which are trace class operators on H , γ > 0, Tr γ = 1 which is

equivalent to

γ =
∑
i

λi |ui〉 〈ui|

where (ui)i is an orthonormal family, λi > 0 and
∑

i λi = 1.

Remark 2.1 (Dirac “Bra-Ket”). By Riesz’s representation Theorem 1.42 H = H ∗

with the isomorphism being given by

v 7−→ (Lv : u 7→ 〈v, u〉)

for all u ∈ H . We say that a state |u〉 ∈ H is a ket, and 〈u| ∈ H ∗ is a bra. In

33
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particular the inner product of u, v ∈H is written as

〈u | v〉 .

If u ∈H , then |u〉 〈u| is the projection onto u, i.e.

(|u〉 〈u|)ϕ = (|u〉 〈u|) |ϕ〉 = 〈u |ϕ〉︸ ︷︷ ︸
∈C

|u〉 .

�

Remark 2.2. In classical mechanics we think of particles as being point-like and moving

along fixed trajectories in phase/configuration space. In particular their dynamics is

determined by the set of equations

ẋ(t) = v(t)

v̇(t) = F (x(t), v(t))

with (x, v) ∈ Rd × Rd.

However, within classical mechanics the hydrogen atom is not stable. The ground

energy of that system is given by

inf
(x,v)∈Rd×Rd

(
mv2

2
− 1

|x|

)
= −∞,

which leads to this problem. �

In quantum mechanics a particle is described by a wave function ψ ∈ L2(Rd) with ‖ψ‖L2 = 1,

where |ψ(x)|2 is thought of as the probability distribution of the position of the particle, in

particular

P(“ψ ∈ Ω”) =

∫
Ω

|ψ(x)|2dx.

Analogously, its Fourier transform
∣∣∣ψ̂(k)

∣∣∣2 describes a probability distribution for the mo-

mentum.
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In this case the energy of a particle in the Hydrogen system is given by

〈ψ,Hψ〉 =
〈
ψ, |p|2ψ

〉
−
〈
ψ,

1

|x|
ψ

〉
=

∫
|2πk|2|ψ̂(k)|2dk −

∫
|ψ(x)|2

|x|
dx =

=

∫ (
|∇ψ(x)|2 − |ψ(x)|2

|x|

)
dx =

〈
ψ,

(
−∆− 1

|x|

)
ψ

〉
.

Definition 2.3 (Momentum Operator). We define the momentum operator p to be

given by

p = −i∇

in x-space, or in k-space

p = 2πk.

�

2.1 Stability of the Hydrogen Atom

Why does

E(u) :=

∫
R3

(
|∇u|2 − |u|

2

|x|

)
dx > −C

hold for all u with ‖u‖L2 = 1?

We can prove this with the help of so-called uncertainty principles.

Theorem 2.4 (Hardy Uncertainty Principle). If u 6≡ 0, then u(x) and û(k) cannot both

have compact support. A stronger version of Hardy’s uncertainty principle is given by:

If for α > 0

|u(x)| . e−πα|x|
2

then

|û(k)| & e−
π|k|2
α

as |k| → ∞.
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Note here that

ê−πα|·|2(k) = e−
π|k|2
α

�

Theorem 2.5 (Heisenberg Uncertainty Principle). For all u ∈ C 1
c (Rd), ‖u‖L2 = 1(∫

|∇u|2dx

)(∫
|x|2|u(x)|2dx

)
>
d2

4
.

�

Proof. See Exercise 3.4. q.e.d.

Remark 2.6. The Heisenberg uncertainty principle is not enough to prove the stability

of the Hydrogen atom! �

Theorem 2.7 (Refined Hardy Uncertainty Principle, Hardy’s Inequality). For all u ∈
C 1
c (R3), ∫

R3

|∇u(x)|2dx >
1

4

∫
R3

|u(x)|2

|x|2
dx

�

Proof. Let g(x) = u(x)|x|1/2. Then g(0) = 0 and

∇u(x) = ∇
(
g(x)

|x|1/2

)
=
∇g(x)

|x|1/2
− 1

2
g(x)

x

|x|5/2

which implies that

|∇u(x)|2 =
|∇g(x)|2

|x|
+

1

4

|g(x)|2

|x|3
−R

∇g(x)g(x)x

|x|3
.

Integrating over this expression yields∫
|∇u(x)|2dx =

∫
|∇g(x)|2

|x|
dx︸ ︷︷ ︸

>0

+
1

4

∫
|u(x)|2

|x|2
dx−

∫
R
∇g(x)g(x)x

|x|3
dx.
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We claim that the last term vanishes which proves the assertion. To see this we integrate by

parts ∫
R
∇g(x)g(x)x

|x|3
dx = −1

2

∫
R3

(
∇
(
|g(x)|2

))
∇
(

1

|x|

)
dx =

1

2

∫
R3

|g(x)|2∆

(
1

|x|

)
dx =

= −2π|g(0)|2 = 0

because g(0) = 0 and −∆ 1
|x| = 4πδ(x) (in the distributional sense).

q.e.d.

Remark 2.8 (Comments on the Proof). We proved that

E(u) =

∫
R3

(
|∇u|2 − 1

4

|u(x)|2

|x|2

)
dx > 0.

If there exists a minimiser for

inf
u∈C 1

c

(∫ (
|∇u(x)|2 − 1

4

|u(x)|2

|x|2

)
dx

)
then it would have to solve the Euler-Lagrange equation, i.e. d

dt
E(u + tϕ) = 0 for all

ϕ ∈ C∞c . In this case this is equivalent to(
−∆− 1

4|x|2

)
u(x) = 0 ⇐⇒ u(x) =

1

|x|1/2
.

However, 1

|x|1/2 /∈ L2(R3) and thus Hardy’s inequality is strict, i.e. for all u 6≡ 0

∫
|∇u|2 > 1

4

∫
|u(x)|2

|x|2
dx.

Still, we can think of 1

|x|1/2 as a “ground state”. The choice u(x) = g(x)

|x|1/2 corresponds to

the so-called “ground-state substitution”. �
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Theorem 2.9 (Stability of the Hydrogen Atom). There exists C > 0 such that for all

u ∈ C 1
c (R3), ‖u‖L2 = 1 ∫

R3

(
|∇u(x)|2 − |u(x)|2

|x|

)
dx > −C.

�

Proof. We shall combine Hardy’s inequality with Hölder’s

∫
R3

|u(x)|2

|x|
6

∫
R3

|u(x)|2

|x|2

1/2∫
R3

|u(x)|2
1/2

6

4

∫
R3

|∇u(x)|2dx

1/2

Thus we find that∫ (
|∇u(x)|2 − |u(x)|2

|x|

)
>
∫
|∇u|2 − 2

(∫
|∇u|2

)1/2

> −1

where we used that t2 − 2t > −1. q.e.d.

Remark 2.10. In fact one can prove that∫
R3

(
|∇u(x)|2 − |u(x)|2

|x|

)
dx > −1

4

where the constant −1
4

is sharp. �



Chapter 3

Sobolev Spaces

3.1 Distribution Theory

Definition 3.1 (Test Functions). We define D(Rd) := C∞c (Rd) with the very strong

topology

ϕn
n→∞−−−→ ϕ in D(Rd) :⇐⇒

‖Dαϕn −Dαϕ‖L∞
n→∞−−−→ 0, for all α ∈ Nd and⋃

n∈N suppϕn is compact.

�

Definition 3.2 (Distributions). We define the space of distributions D ′(Rd) to be the

set of continuous linear functionals on D(Rd), i.e.

T : C∞c −→ C.

We equip D ′(Rd) with the weak topology, i.e.

Tn
n→∞−−−→ T :⇐⇒ ∀u ∈ D(Rd) : Tn(u)

n→∞−−−→ T (u).

�

39
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Example 3.3. Let f ∈ L1
loc(Rd), i.e. 1Ωf ∈ L1(Rd) for any compact set Ω. Then

Tf :

C∞c (Rd) −→ C

ϕ 7−→
∫
Rd

fϕ
.

Here Tf is obviously a linear functional and it is continuous. Too see the latter let

(ϕn)n ⊂ D(Rd) with ϕn
n→∞−−−→ ϕ in D(Rd). Then (‖ϕn‖L∞)n is bounded by some

constant C and Ω :=
⋃
n suppϕn is compact. Thus for all n ∈ N

|fϕn| = |f1Ωϕn| 6 C|f |1Ω ∈ L1(Rd)

is an integrable majorant independent of n ∈ N and we may apply the dominated

convergence theorem to conclude

lim
n→∞

Tf (ϕn) = lim
n→∞

∫
fϕn =

∫
fϕ = Tf (ϕ).

Lemma 3.4 (Fundamental Lemma of the Calculus of Variations). If f ∈ L1
loc(Rd) and∫

fϕ = 0 for all ϕ ∈ C∞c (Rd), then f ≡ 0. �

Proof. 1) Assume that f ∈ L1(Rd). Then for all ϕ ∈ C∞c and all x ∈ Rd

(f ∗ ϕ)(x) =

∫
Rd

f(y)ϕ(x− y) = 0

because y 7→ ϕ(x−y) ∈ C∞c . In particular, take g ∈ C∞c , with
∫
g = 1, gε(x) := 1

εd
g
(
x
ε

)
.

Then gε ∗ f
ε→0−−→ f in L1(Rd). But gε ∗ f = 0 by the above argument. Hence f ≡ 0.

2) If f ∈ L1
loc(Rd), then taking g ∈ C∞c (Rd), fg ∈ L1(Rd). We have∫

Rd

(fg)ϕ =

∫
Rd

f (gϕ)︸︷︷︸
∈C∞c

= 0

for all ϕ ∈ C∞c (Rd). Applying the first step to fg ∈ L1(Rd) we conclude that fg ≡ 0.

Thus f = 0 on supp g. But g is arbitrary in C∞c and therefore f ≡ 0.

q.e.d.
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Definition 3.5 (Derivatives of Distributions). If T ∈ D ′(Rd), we can define ∂xiT ∈
D ′(Rd) via

(∂xiT )(ϕ) = −T (∂xiϕ)

for all ϕ ∈ C∞c (Rd). In general we define for α ∈ Nd, DαT ∈ D ′(Rd) via

(DαT )(ϕ) = (−1)|α|T (Dαϕ).

�

Remark 3.6. The motivation for this definition is that for f ∈ C 1(Rd)∫
∂xifϕ = −

∫
f∂xiϕ

for all ϕ ∈ C∞c (Rd). In this case, ∂xiTf = T∂xif , i.e. the distributional derivative equals

the classical derivative wherever the function is differentiable.

To make sure that this derivative is well-defined, one has to check that ϕ 7→ T (Dαϕ) is

linear (trivial) and continuous in D(Rd). (Exercise) �

Theorem 3.7.

Hm(Rd) =
{
f ∈ L2(Rd)

∣∣ |k|mf̂(k) ∈ L2(Rd)
}

=

=
{
f ∈ L2(Rd)

∣∣Dαf ∈ L2(Rd) for all |α| 6 m
}
.

�

Proof. Take f ∈ L2(Rd), with |k|mf̂(k) ∈ L2(Rd). Take g such that ĝ(k) = (2πik)αf̂(k)

which is in L2(Rd) for all |α| 6 m. In particular we also have g ∈ L2(Rd).

Now we prove that g = Dαf in the distributional sense, i.e. for all ϕ ∈ C∞c∫
gϕ = (−1)|α|

∫
f(Dαϕ) ⇐⇒

∫
ϕg = (−1)|α|

∫
(Dαϕ)f.
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To prove this we use Placherl’s identity to get∫
ϕg =

∫
ϕ̂ĝ =

∫
ϕ̂(k)(2πki)αf̂(k)dk = (−1)|α|

∫
(2πik)αϕ̂(k)f̂(k)dk =

= (−1)|α|
∫
D̂αϕ(k)f(k)dk = (−1)|α|

∫
Dαϕf.

The other direction is an easy exercise. q.e.d.

Theorem 3.8. For all m > 1, C∞c (Rd) is dense in Hm(Rd). �

Proof. 1) Take f ∈ H1(Rd). Assume that f has compact support. Take g ∈ C∞c ,
∫
g = 1,

gε(x) := 1
εd
g
(
x
ε

)
. Then C∞c (Rd) 3 gε ∗ f

ε→0−−→ f in L2(Rd).

Moreover,

∂xi(gε ∗ f) = gε ∗ (∂xif)︸ ︷︷ ︸
L2

ε→0−−→ ∂xif

in L2(Rd).

2) If f ∈ H1(Rd), take h ∈ C∞c (Rd). Then fh ∈ H1(Rd) and

∂xi(fh) = (∂xif)︸ ︷︷ ︸
∈L2

h+ f (∂xih)︸ ︷︷ ︸
C∞c

,

i.e. for all ϕ ∈ C∞c ∫
fh(∂xiϕ) =

∫
((∂xif)h+ f(∂xih))ϕ.

This is left as an exercise. Thus fh and ∂xi(fh) have compact support and we can

approximate fh by C∞c (Rd) functions in H1(Rd). Finally, we can choose a sequence

(hn)n ⊂ C∞c such that

fhn
n→∞−−−→ f in H1(Rd).

(e.g. take hn = 1 if |x| 6 n, hn(x) = 0 if |x| > 2n and |∇hn| 6 C
n

(Exercise)).

q.e.d.
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3.2 Sobelev Inequalities

Remark 3.9. To see that Hardy’s inequality is sharp we may use a so-called scaling

argument. Let u(x) 7→ λu(`x) be a dilation. Then for λ = 1 for example we have∫
R3

|∇u(`x)|2dx =

∫
R3

`2|∇u(x)|dx
`3

=

∫
R3

|∇u|2

`
dx,

∫
|u(`x)|2

|x|2
dx =

∫
|u(x)2|∣∣x

`

∣∣2 dx

`3
=

∫
|u(x)|2

`|x|2
dx.

�

Theorem 3.10 (Standard Sobolev Inequality). If d > 3. Then for all u ∈ H1(Rd)

∫
Rd

|∇u(x)|2dx > C

∫
Rd

|u(x)|pdx

 2
p

for p = 2d
d−2

. Here the constant C = C(d) is independent of u. In particular we have

‖∇u‖L2(Rd) >

√
3

2
(2π2)

1
3‖u‖L6(R6) ≈ 2.34‖u‖L6(R3).

�
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Remark 3.11. The Sobolev inequality is invariant under the dilation

u`(x) = `
d
2u(`x)

for which we have ‖u`‖L2(Rd) = ‖u‖L2(Rd) and∫
Rd

|∇u`(x)|2dx =

∫
Rd

`d`2|(∇u)(`x)|2dx = `2

∫
Rd

|∇u(x)|2dx

∫
Rd

|u`(x)|pdx

 2
p

=

∫
Rd

`
pd
2 |u(`x)|pdx

 2
p
= `

pd
2
−d
∫
Rd

|u(x)|pdx

 2
p

=

= `( pd
2
−d) 2

p

∫
Rd

|u(x)|pdx

 2
p

If we want

∫
Rd

|∇u`|2 > C

∫
Rd

|u`|p
 2

p

⇐⇒ `2

∫
Rd

|∇u|2 > C`d−
2d
p

∫
Rd

|u|p
 2

p

This holds for all ` > 0 with a universal constant C iff

2 = d− 2d

p
⇐⇒ p =

2d

d− 2
.

�

Lemma 3.12. Let cs := π−
s
2 Γ
(
s
2

)
, where Γ(s) =

∫∞
0
e−tts−1dt. Then, on Rd

ĉs
| · |s

(k) =
cd−s
|k|d−s

.

for all 0 < s < d. As neither the left nor the right-hand side are integrable this is taken

to mean that for all f ∈ C∞c (Rd)

ĉs
|x|s
∗ f =

cd−s
|k|d−s

f̂(k).
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�

Proof. Making the substitution t = πλ|x|2 we find that

Γ(s) =

∞∫
0

e−tts−1dt =

∞∫
0

e−πλ|x|
2

(πλ|x|2)s−1π|x|2dλ.

Therefore

Γ
(s

2

)
= π

s
2 |x|s

∞∫
0

e−πλ|x|
2

λ
s
2
−1dλ.

Thus we have for all x ∈ Rd \ {0}

cs
|x|s

=

∞∫
0

e−πλ|x|
2

λ
s
2
−1dλ.

As we know the Fourier transform of the Gaussian

ê−πλ|·|2(k) =
e−π

|k|2
λ

λ
d
2

.

we find

ĉs
| · |s

=

∞∫
0

ê−πλ|·|2λ
s
2
−1dλ =

∞∫
0

e−π
|k|2
λ

λ
d
2

λ
s
2
−1dλ

λ 7→λ−1

====

∞∫
0

e−πλ|k|
2

λ
d
2λ1− s

2
dλ

λ2
=

=

∞∫
0

e−πλ|k|
2

λ
d−s

2
−1dλ =

cd−s
|k|d−s

q.e.d.

Proof of Theorem 3.10. Define ĝ(k) = |2πk|û(k), then

‖∇u‖L2 =

∫
Rd

|2πk|2|û(k)|2dk

 1
2

=

∫
Rd

|ĝ(k)|2dk

 1
2

=

∫
Rd

|g(x)|2dx

 1
2

= ‖g‖L2(Rd).

On the other hand

û(k) =
1

|2πk|
ĝ(k) =

1

2πc1

c1

|k|
ĝ(k) =

1

2πc1

̂cd−1

|x|d−1
∗ g(k)
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by the above lemma. Therefore,

u(x) =
cd−1

2πc1

(
1

|x|d−1
∗ g
)

(x) =
cd−1

2πc1

∫
Rd

1

|x− y|d−1
g(y)dy.

Thus we want to prove that

‖g‖L2(Rd) > C

∥∥∥∥ 1

|x|d−1
∗ g
∥∥∥∥
Lp(Rd)

.

Recall that by the Hardy-Littlewood-Sobolev inequality Theorem 1.30∣∣∣∣∣∣
∫
Rd

f(x)

(
1

| · |d−1
∗ g
)

(x)dx

∣∣∣∣∣∣ =

∫
Rd

∫
Rd

|f(x)g(y)|
|x− y|d−1

dxdy 6 C‖f |‖Lq‖g‖L2

where 1
q

+ 1
2

+ d−1
d

= 2, i.e. q = 2d
d+2

. Now using that

‖h‖Lq′ = sup
f∈Lq(Rd)\{0}

∣∣∫ f(x)h(x)dx
∣∣

‖f‖Lq
.

we get ∥∥∥∥ 1

| · |d−1
∗ g
∥∥∥∥
Lq′ (Rd)

= sup
f∈Lq(Rd)\{0}

∣∣∣∫ f(x)
(

1
|·|d−1 ∗ g

)
(x)dx

∣∣∣
‖f‖Lq

6 C‖g‖L2

where 1
q′

+ d+2
2d

= 1, i.e. q′ = 2d
d−2

.

q.e.d.

Remark 3.13. The proof of the sharp constant is more complicated. It requires so-

called “rearrangement inequalities” i.e. for u∗ radial

‖∇u‖L2 > ‖∇u∗‖L2 , ‖u‖Lp = ‖u∗‖Lp

�
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Example 3.14 (Using Sobolev’s Inequality to prove the Stability of the Hydrogen

Atom). We can prove the stability of the hydrogen atom∫
R3

|∇u|2 −
∫
R3

|u(x)|2

|x|
dx > −C

for all u ∈ H1(R3), with ‖u‖L2 = 1. We know that∫
R3

|∇u|2 > 3

4
(2π2)

2
3‖u‖2

L6

and∫
R3

|u(x)|2

|x|
=

∫
|x|6R

|u(x)|2

|x|
dx+

∫
|x|>R

|u(x)|2

|x|
dx 6

6

 ∫
|x|6R

|u(x)|6


1
3
 ∫
|x|6R

1

|x| 32


2
3

+

∫
|x|>R

|u(x)|2

R
dx 6 ‖u‖2

L64
(π

3

) 2
3
R +

1

R

Theorem 3.15 (Sobolev Inequality in Lower Dimensions).

d = 1: For all 2 6 p 6∞ we have

‖u‖Lp(R) 6 C‖u‖H1(R).

Moreover, H1(R) ⊂ C (R), with the embedding ι : H1(R) → C (R) being continu-

ous, and ‖u‖2
L∞ 6 ‖u′‖L2‖u‖L2 for all u ∈ H1(R).

d = 2: For all 2 6 p <∞
‖u‖Lp(R2) 6 C‖u‖H1(R2).

�

Proof.
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d = 1: Take u ∈ C∞c (R). Then

u(x) =

x∫
−∞

u′(t)dt = −
∞∫
x

u′(t)dt

Thus for all x ∈ R

|u(x)| 6 1

2

∞∫
−∞

|u′(t)|dt

and therefore

|u(x)|2 = |u(x)2| 6 1

2

∞∫
−∞

∣∣∣∣ ddt(u(t)2
)∣∣∣∣dt =

∞∫
−∞

|u′(t)||u(t)|dt 6 ‖u′‖L2‖u‖L2 .

Thus

‖u‖2
L∞ 6 ‖u′‖L2‖u‖L2 6 ‖u‖2

H1 .

Moreover, ‖u‖L2 6 ‖u‖H1 . By interpolation we therefore have for all 2 6 p 6∞

‖u‖Lp 6 max{‖u‖L2 , ‖u‖L∞} 6 ‖u‖H1(R).

Now for u ∈ H1(R), then we can find a sequence (un)n ⊂ C∞c such that un
n→∞−−−→ u in

H1(R). Moreover

‖un − um‖L∞(R) 6 ‖un − um‖H1(R)
n,m→∞−−−−→ 0.

Thus (un)n is a Cauchy sequence in L∞, i.e un → v ∈ L∞. However, using the implied

weak convergence it follows that u = v.

We also have for any compact set Ω ⊂ R, (un)n is a Cauchy sequence in C (Ω) with the

supremum-norm for any compact Ω. Thus un → ϕ in C (Ω). Thus u
∣∣
Ω

= ϕ ∈ C (Ω).

Since Ω was arbitrary it follows that u ∈ C (R).

d = 2: We take u ∈ C∞c (R2). We first prove that

‖u‖L2(R2) 6 ‖∇u‖L1(R2).
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Indeed

|u(x, y)| 6 1

2

∞∫
−∞

|∂xu(z, y)|dz,

|u(x, y)| 6 1

2

∞∫
−∞

|∂yu(x, z′)|dz′.

Therefore,

|u(x, y)|2 6 1

4

∞∫
−∞

∞∫
−∞

|∂xu(z, y)||∂y(x, z′)|dzdz′.

Taking the x,y integrals we now get

‖u‖2
L2(R2) 6

1

4

∫
R

∫
R

∫
R

∫
R

|∂xu(z, y)||∂y(x, z′)|dxdydzdz′ 6
1

4

∫
R2

|∇u(x, y)|dxdy

2

and thus

‖u‖L2 6 ‖∇u‖L1 .

Using ‖u‖L2 6 ‖∇u‖L1 with u replaced by un, n ∈ N we get

∫
R2

|u(ξ)|2ndξ 6

∫
R2

|∇(u(ξ)n)|dξ

2

=

∫
R2

n|∇u(ξ)|n|u(ξ)n−1|dξ

2

6

6 n2

(∫
|∇u|2

)(∫
|u|2(n−1)

)
6 n2(n− 1)2

(∫
|∇u|2

)2(∫
u2(n−2)

)
6

6 (n!)2‖u‖2n
H1 .

Thus ‖u‖L2n(R2) 6 n
√
n!‖u‖H1(R) for all n ∈ N.

For any 2 6 p <∞, we can find n ∈ N such that 2n 6 p 6 2(n+ 1) thus

‖u‖Lp 6 max{‖u‖L2n , ‖u‖L2(n+1)} 6 n+1
√

(n+ 1)!‖u‖H1(R2),

i.e. ‖u‖Lp 6 Cp‖u‖H1(R2). Here we cannot take p =∞ because Cp
p→∞−−−→∞.

For u ∈ H1(R2) we approximate it by a sequence of C∞c functions.

q.e.d.
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Remark 3.16 (Riesz-Thorin Inequality for Lp spaces). For p < q < r we have

‖u‖Lq 6 ‖u‖1−ϑ(q)
Lp ‖u‖ϑ(q)

Lr

where ϑ(q) = r(q−p)
q(r−p) which can be proven using the Hölder inequality. �

Remark 3.17. Recall that weak convergence un
n→∞−−−⇀ u in H1(Rd) means that for all

ϕ ∈ H1(Rd)

〈un, ϕ〉H1

n→∞−−−→ 〈u, ϕ〉H1

where

〈u, ϕ〉H1 = 〈u, ϕ〉L2 + 〈∇u,∇ϕ〉L2 = 〈u, ϕ〉L2 +
d∑
i=1

〈∂xiu, ∂xiϕ〉L2 .

�

Lemma 3.18. Weak convergence un
n→∞−−−⇀ u in H1(Rd) is equivalent toun

n→∞−−−⇀ u, in L2,

∂xiun
n→∞−−−⇀ ∂xju in L2 for all j = 1, . . . , d.

�

Proof. (⇐) Trivial as

〈un, ϕ〉L2 + 〈∇un,∇ϕ〉L2

n→∞−−−→ 〈u, ϕ〉L2 + 〈∇u,∇ϕ〉L2 = 〈u, ϕ〉H1

(⇒) Define for all ϕ ∈ L2 the functional

Lϕ : v 7−→ 〈ϕ, v〉L2 .

This functional is a linear and continuous map L2(Rd)→ C and H1(Rd)→ C because

‖ϕ‖L2 6 ‖ϕ‖H1 .

Thus un ⇀ u in H1 implies that Lϕ(un)
n→∞−−−→ Lϕ(u), i.e. for all ϕ ∈ L2(Rd)

〈un, ϕ〉L2

n→∞−−−→ 〈u, ϕ〉L2
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Analogously un ⇀ u in H1 implies that ∂xiun ⇀ ∂xiu in L2.

q.e.d.

Definition 3.19 (Kernel of Operators). For an operator K : L2(Rd)→ L2(Rd), we call

a function K(x, y) the kernel of K if for all f ∈ L2(Rd)

(Kf)(x) =

∫
Rd

K(x, y)f(y)dy.

�

Example 3.20. � Green’s Function of the Laplacian : If K = (−∆)−1 and

d = 3 then

K(x, y) =
1

4π|x− y|
.

� Heat Kernel : Let K = et∆, i.e.

êt∆f(k) = e−t|2πk|
2

f̂(k)

then

K(x, y) =
1

(4πt)
d
2

e−
|x−y|2

4t = G(x− y).

This is the case as

Ĝ ∗ f(k) = Ĝ(k)f̂(k) = e−t|2πk|
2

f̂(k).

Lemma 3.21 (Heat Kernel). If f ∈ L2(Rd), then for all t > 0

et∆f ∈ Hm(Rd)

for all m > 1. Moreover, if fn ⇀ f weakly in L2(Rd), then

et∆fn
n→∞−−−→ et∆f
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point-wise and for any bounded set Ω ⊂ Rd

1Ωe
t∆fn

n→∞−−−→ 1Ωe
t∆f

strongly in L2(Rd).

�

Proof. 1) If f ∈ L2 then

êt∆f(k) = e−t|2πk|
2

f̂(k)

and thus for all m > 1

(1 + |k|2)
m
2 êt∆f(k) = (1 + |k|2)

m
2 e−t|2πk|

2

f̂(k) ∈ L2(Rd)

because f̂ ∈ L2 and (1 + |k|2)
m
2 e−t|2πk|

2
is bounded. Thus et∆f ∈ Hm(Rd).

2) (
et∆f

)
(x) =

1

(4πt)
d
2

∫
e−
|x−y|2

4t f(y)dy.

For all x ∈ Rd we have

(
et∆fn

)
(x) =

1

(4πt)
d
2

∫
Rd

e−
|x−y|2

4t fn(y)dy
n→∞−−−→ 1

(4πt)
d
2

∫
Rd

e−
|x−y|2

4t f(y)dy =
(
et∆f

)
(x)

because fn ⇀ f weakly in L2 and e−
|x−y|2

4t ∈ L2(Rd).

Moreover if x ∈ Ω, for Ω ⊂ Rd bounded, then

∣∣et∆fn(x)
∣∣ =

1

(4πt)
d
2

∣∣∣∣∣∣
∫
Rd

e−
|x−y|2

4t fn(y)dy

∣∣∣∣∣∣ 6 1

(4πt)
d
2

∫
Rd

e−
|x−y|2

2t dy

 1
2
∫

Rd

|fn(y)|2dy

 1
2

6

6
1

(4πt)
d
2

∫
Rd

e−
|y|2
2t dy

 1
2

C 6 Ct

as fn ⇀ f and thus ‖fn‖L2 is bounded. Therefore for any bounded set 1Ω the function

|et∆fn(x)| 6 Ct1Ω

is an integrable majorant independent of n. Thus as we have point-wise convergence
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by dominated convergence it follows that

1Ωe
t∆fn

n→∞−−−→ 1Ωe
t∆f

strongly in L2(Rd).

q.e.d.

Theorem 3.22 (Sobolev Embedding of H1(Rd)). If un
n→∞−−−⇀ u weakly in H1(Rd), then

for all Ω ⊂ Rd bounded, 1Ωun
n→∞−−−→ 1Ωu strongly in Lp(Rd) for
2 6 p < 2d

d−2
, if d > 3,

2 6 p <∞, if d = 2,

2 6 p 6∞ if d = 1.

This means that the embedding 1ΩL
1(Rd) ⊂ 1ΩL

p(Rd) is compact �

Proof. First we prove that 1Ωun → 1Ωu strongly in L2(Rd) using the heat kernel:

1Ωun − 1Ωu = 1Ω

(
un − et∆un

)
+ 1Ω

(
et∆un − et∆u

)
+ 1Ω

(
et∆u− u

)
and thus

‖1Ωun − 1Ωu‖L2 6
∥∥1Ω

(
un − et∆un

)∥∥
L2 +

∥∥1Ω

(
et∆un − et∆u

)∥∥
L2 +

∥∥1Ω

(
et∆u− u

)∥∥
L2 .

Note that

∥∥1Ω

(
et∆u− u

)∥∥2

L2 6
∥∥et∆u− u∥∥2

L2 =
∥∥∥êt∆u− û∥∥∥2

L2
=

∫
Rd

∣∣∣1− e−t|2πk|2∣∣∣|û(k)|2dk

and

0 6 1− e−t|2πk|2 6 min
{
t|2πk|2, 1

}
∴

∣∣∣1− e−t|2πk|2∣∣∣ 6 min
{
t|2πk|2, 1

}
6 t|2πk|2.

Thus ∥∥1Ω

(
et∆u− u

)∥∥2

L2 6
∫
Rd

t|2πk|2|û(k)|2dk = t‖∇u‖2
L2 6 t‖u‖2

H1 .
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Therefore we have

‖1Ω(un − u)‖L2 6 C
√
t+
∥∥1Ω

(
et∆un − et∆u

)∥∥
L2 .

By strong convergence the last term converges to 0 as n→∞ thus

lim sup
n→∞

‖1Ω(un − u)‖L2 6 C
√
t
t↓0−→ 0

which proves the strong convergence 1Ωun
n→∞−−−→ 1Ωu.

The strong convergence in Lp with Lp with 2 6 p < 2d
d−2

=: p∗ follows by interpolation.

Note that we proved in Exercise 2.4. (i) that if fn → f strongly in L2(Rd) and ‖fn‖Lp∗
is bounded for p∗ > 2 (which follows by the Sobolev inequality, weak convergence and the

uniform boundedness principle) then fn → f strongly in Lp(Rd) for all 2 6 p < p∗.

In the case d = 1, we have to prove that

‖1Ωun − 1Ωu‖L∞
n→∞−−−→ 0.

First we prove that un(x) → u(x) pointwise. Since 1Ωun → 1Ωu in L2 we can find a

subsequence such that this holds. In fact, this is already true for the original sequence

because

u(y)− u(x) =

y∫
x

u′(t)dt

Therefore, if un(x0)→ u(x0) then

un(y)− un(x0) =

y∫
x0

u′n(t)dt
n→∞−−−→

y∫
x0

u′(t)dt = u(y)− u(x0)

as 1[x0,y] ∈ L2(Rd). Thus for all un(y)→ u(y) for all y ∈ R.

From u(y)− u(x) =
y∫
x

u′(t)dt we have

|u(y)− u(x)| 6

∣∣∣∣∣∣
y∫
x

dt

∣∣∣∣∣∣
1
2
∣∣∣∣∣∣
y∫
x

|u′(t)|dt

∣∣∣∣∣∣
1
2

6
√
|x− y|‖u‖H1

and

|un(y)− un(x)| 6
√
|x− y|‖un‖H1 6 C

√
|x− y|
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Now we conclude that supx∈Ω |un(x) − u(x)| → 0 for any bounded set Ω ⊂ R. Assume

that supx∈Ω |un(x) − u(x)| 6→ 0. Then there exists a δ > 0 and a subsequence (unk)k and a

sequence (xk)k ⊂ Ω such that

|unk(xk)− u(xk)| > δ > 0

for all k ∈ N. Because (xk)k ⊂ Ω is bounded, we can descend to a subsequence, and assume

that xk
k→∞−−−→ x∞. Thus

|unk(xk)− u(xk)| 6 |unk(xk)− uk(x∞)|+ |unk(x∞)− u(x∞)|+ |u(x∞)− u(xk)| 6

6 C
√
|xk − x∞|+ |un(x∞)− u(x∞)|

and therefore

lim
n→∞

|un(xn)− u(xn)| 6 0

which is a contradiction. Thus we conclude that

sup
x∈Ω
|un(x)− u(x)| n→∞−−−→ 0.

q.e.d.

Theorem 3.23 (Sobolev Inequality and Embeddings for Hs(Rd)). For any s > 1

1)

‖f‖Hs > C‖f‖Lp

for all 
2 6 p 6 2d

d−2s
, if 2s < d

2 6 p <∞, if 2s = d

2 6 p 6∞, if 2s > d

In particular, if 2s > d, then Hs(Rd) ⊂ C (Rd), e.g. H2(R3) ⊂ C (R3).

2) If fn ⇀ f weakly in Hs(Rd), then for all Ω ⊂ Rd bounded

1Ωfn
n→∞−−−→ 1Ωf
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strongly in Lp(Rd) for all
2 6 p < 2d

d−2s
, if 2s < d

2 6 p <∞, if 2s = d

2 6 p <∞, if 2s > d

�

Sketch of Proof. 1) The fact that

‖f‖Hs > C‖f‖Lp

if p = 2d
d−2s

if 2s < d follows from the Hardy-Littlewood-Sobolev inequality (Exericse).

Now let us focus on 2s > d. We prove that

‖f‖∞ 6 C‖f‖Hs(Rd).

We can write

|f(x)| 6
∣∣∣∣∫ e2πik·xf̂(k)dk

∣∣∣∣ 6
∫

Rd

|f̂(k)|2
(
1 + |k|2

)s
dk

 1
2
∫

Rd

∣∣e2πik·x
∣∣

(1 + |k|2)s
dk

 1
2

︸ ︷︷ ︸
<∞

if 2s>d

6

6 C‖f‖Hs .

Next, we prove that Hs(Rd) ⊂ C
(
Rd
)
. We have

|f(x)− f(x′)| =

∣∣∣∣∣∣
∫
Rd

(
e2πik·x − e2πik·x′

)
f̂(k)dk

∣∣∣∣∣∣ 6
6

∫
Rd

|f̂(k)|2
(
1 + |k|2

)s
dk

 1
2
∫

Rd

∣∣e2πik·x − e2πik·x′
∣∣

(1 + |k|2)s
dk

 1
2

.

Note that ∣∣∣e2πik·x − e2πik·x′
∣∣∣ 6 min{|2πk||x− x′|, 1}
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and therefore ∣∣∣e2πik·x − e2πik·x′
∣∣∣2 6 Cε|k|ε|x− x′|ε

for all ε > 0 small enough. Thus

|f(x)− f(x′)| 6 Cε‖f‖Hs

∫
Rd

|k|ε|x− x′|ε

(1 + |k|2)s
dk

 1
2

6 Cε|x− x′|
ε
2

if ε− 2s < −d which is equivalent to ε < 2s− d, i.e. for all such ε

sup
x 6=x′

|f(x)− f(x′)|
|x− x′| ε2

< Cε

2) For the proof of the embedding 1Ωfn → 1Ωf in Lp, the only difficult part is the L∞

convergence when 2s > d.

For the pointwise convergence fn ⇀ f in Hs(Rd), then fn(x)→ f(x) for all x ∈ Rd.

|fn(x)− f(x)| =

∣∣∣∣∣∣
∫
Rd

e2πik·x
(
f̂n(k)− f̂(k)

)
dk

∣∣∣∣∣∣ 6
6

∣∣∣∣∣∣∣
∫
|k|6K

e2πik·x
(
f̂n − f̂

)
dk

∣∣∣∣∣∣∣+

∫
|k|>K

|f̂n(k)− f̂(k)|dk 6

6

∣∣∣∣∣∣∣
∫
|k|6K

· · ·

∣∣∣∣∣∣∣+

(∫
|f̂n(k)− f̂(k)|2

(
1 + |k|2

)s
dk

) 1
2

 ∫
|k|>K

1

(1 + |k|2)s
dk


1
2

6

6

∣∣∣∣∣∣∣
∫
|k|6K

· · ·

∣∣∣∣∣∣∣+
cε
Kε

for some ε > 0. Letting n → ∞ the first term vanishes as f̂n ⇀ f̂ weakly and letting

K →∞ the second one does as well.

q.e.d.

Remark 3.24. 1) The kernel K = (−∆)−1, K(x, y) = 1
4π|x−y| in R3 appears in
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physical applications as the potential x 7→ 1
|x| , for example in Coulomb’s law

Z1Z2

|x− y|

and Newton’s law of Gravitation

m1m2

|x− y|
.

Recall that ∆
(

1
|x|

)
= 0 for any x 6= 0 in R3. More generally, if ∆u = 0 on Ω ⊂ Rd

then we call u a harmonic function on Ω.

�

Theorem 3.25 (Harmonic Functions). 1) If ∆u = 0 on Ω ⊂ Rd open, then

1

|Br(x)|

∫
B(x,r)

u(y)dy = u(x) =
1

|S(x, r)|

∫
|x−y|=r

u(y)dy.

for for all balls and spheres such that B(x, r), S(x, r) ⊂ Ω This called the mean-

value theorem for harmonic functions.

2) On R3, if f is a radially symmetric function, i.e. f(Rx) = f(x) for all R ∈ SO(3),

then ∫
R3

f(y)

|x− y|
dy =

∫
R3

f(y)

max{|x|, |y|}
dy.

This result is called Newton’s Theorem.

�

Remark 3.26. 1) If u is harmonic on Ω, then u ∈ C∞(Ω), which we shall not prove.

However, this means that it makes sense to talk about the values of u at a point.

2) Newton’s theorem can be used with f(x) replaced by a measure dµ(x) as well.

3) It also implies that if supp f ⊂ Br(0) and |x| > r then∫
R3

f(y)

|x− y|
dy =

1

|x|

∫
R3

f(y)dy.
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�

Proof. 1) By Stokes’s theorem we have

0 =

∫
B(x,r)

∆u(y)dy =

∫
S(x,r)

∇u(y) · ndy

where n is the unit normal vector to the point on y ∈ S(x, r). By a change of variables

we have ∫
S(x,r)

∇u(y) · ndy = rd−1

∫
S(0,1)

∇u(x+ rω) · ωdω ∴

∴ 0 =

∫
S(0,1)

d

dr
(u(x+ rω))dω =

d

dr

∫
S(0,1)

u(x+ rω)dω.

This means that the value of the integral is independent of r, and thus∫
S(x,r)

u(y)dy = rd−1

∫
S(0,1)

u(x+ rω)dω = rd−1

∫
S(0,1)

u(x)dω = u(x)rd−1S(0, 1) =

= u(x)S(x, r)

which proves the second equality. The first follows immediately from integration over

r.

2) Exercise!

q.e.d.

Theorem 3.27. If f ∈ H1(Rd), then |f | ∈ H1(Rd) and

∇|f |(x) =


R f∇R f+=f∇=f

|f | , if f(x) 6= 0,

0, if f(x) = 0.

Consequently we have |∇f(x)| > |∇|f |(x)| for a.e. x. �

Proof. Take fn ∈ C∞c such that fn → f inH1(Rd) and where we assume that fn and∇fn con-

verge also pointwise a.e. x. Write fn = un+ivn, and defineGn(x) =
√

1
n2 + |un(x)|2 + |vn(x)|2−

1
n
. Note that

Gn(x)
n→∞−−−→

√
|u(x)|2 + |v(x)|2
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pointwise. Thus

∇Gn(x) =
2un∇un + 2vn∇vn

2
√

1
n2 + |un(x)|2 + |vn(x)|2

n→∞−−−→ u(x)∇u(x) + v(x)∇v(x)

|f(x)|

pointwise if f(x) 6= 0.

????Other case????

We actually have L2 convergence by dominated convergence as

|Gn(x)| =
√

1

n2
+ |un(x)|2 + |vn(x)|2 − 1

n
=

|un(x)|2 + |vn(x)|2√
1
n2 + |un(x)|2 + |vn(x)|2 + 1

n

6

6
√
|un(x)|2 + |vn(x)|2 = |fn(x)| 6 F (x) ∈ L2(Rd).

The existence of F follows from Remark 1.10. Thus Gn → |f | strongly in L2(Rd). Moreover,

by the Cauchy-Schwarz inequality we have

|∇Gn(x)| =

∣∣∣∣∣∣ un∇un + vn∇vn√
1
n2 + |un|2 + |vn|2

∣∣∣∣∣∣ 6
√
|un|2 + |vn|2

√
|∇un|2 + |∇vn|2√

1
n2 + |un|2 + |vn|2

6

6
√
|∇un|2 + |∇vn|2 = |∇fn| 6 F̃ (x) ∈ L2(Rd).

Thus we have

∇Gn(x)
n→∞−−−→ ∇G =


R f∇R f+=f∇=f

|f | , if f(x) 6= 0,

0, if f(x) = 0.

strongly in L2(Rd). Thus |f | ∈ H1(Rd) with G(x) = ∇|f |(x). q.e.d.

Proposition 3.28. If (fn)n ⊂ H1(Rd) s.t. fn → f in L2(Rd) and ∇fn → F in L2(Rd),

then f ∈ H1(Rd), and ∇f = F . �

Proof. Exercise! q.e.d.
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3.3 Application of Sobolev Embedding

Recall the Hydrogen energy functional

E(u) =

∫
R3

|∇u|2 −
∫
R3

|u(x)|
|x|

dx

for u ∈ H1(R3), ‖u‖L2 = 1.

Theorem 3.29. There exists a minimiser for E(u) in H1(R3). �

Proof. Recall that

E(u) =
1

2

∫
R3

|∇u|2 +
1

2

∫
R3

|∇u|2 −
∫
R3

|u(x)|
|x|

dx

︸ ︷︷ ︸
>−C

>
1

2

∫
R3

|∇u|2 − C

Thus E(u) is bounded from below, and if (un)n is a minimising sequence

E(un)
n→∞−−−→ E := inf

{
E(u)

∣∣u ∈ H1(R3), ‖u‖L2 = 1
}

then (un)n is bounded in H1(R3). By the Sobolev embedding theorem we can pass to a

subsequence and assume that un ⇀ u0 in H1(R3) and 1Ωun → 1Ωu0 strongly in Lp(R3) for

all 2 6 p < 6.

In particular we have un ⇀ u0 and ∇un ⇀ ∇u0, hence

lim inf
n→∞

∫
|∇un|2 >

∫
|∇u0|2.

Using strong convergence on bounded sets we have∫
|un(x)|2

|x|
dx

n→∞−−−→
∫
|u(x)|2

|x|
dx

which is left as an exercise. Thus we have

E = lim inf
n→∞

E(un) > E(u0).

To say that u0 is a minimiser for E it is therefore enough to show that ‖u0‖L2 = 1. Here we
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know that un ⇀ u0 in L2, thus

1 = lim inf
n→∞

‖un‖L2 > ‖u0‖L2

Assume that ‖u0‖L2 = λ < 1. Then we have E > 0 for

(λ = 0) u0 = 0 and thus E = E(u0) = 0

(λ > 0) Then

E = E(u0) = λ2E
(u0

λ

)
> λ2E ∴ E > 0

for 0 < λ2 < 1. However, we have E < 0 which is a contradiction, i.e. ‖u0‖L2 = 1 and

u0 is a minimiser for E .

To see this, take ϕ ∈ C∞c (R3), ‖ϕ‖L2 = 1, ϕ`(x) = `
3
2ϕ(`x), ‖ϕ`‖L2 = 1 we have

E(ϕ`) =

∫ (
|∇ϕ`(x)|2 − |ϕ`(x)|2

|x|

)
dx = `2

∫
|∇ϕ|2︸ ︷︷ ︸
>0

−`
∫
|ϕ(x)|2

|x|
dx︸ ︷︷ ︸

>0

< 0

if ` > 0 is small enough.

q.e.d.

Remark 3.30. In general, if V is a “nice enough” potential such that

E = inf

{∫
|∇u|2 +

∫
V (x)|u(x)|2dx

∣∣∣∣u ∈ H1(Rd), ‖u‖L2 = 1

}
satisfies −∞ < E < 0, then a minimiser of E exists. �



Chapter 4

Spectral Theorem

Let H be a separable Hilbert space.

Definition 4.1. � A linear operator A : H → H is called bounded if for a

bounded set B ⊂H , A(B) is bounded.

� A linear operator A : H →H is called compact A(B) is compact in H , if B is

bounded in H .

�

Example 4.2. The inclusion H1(Rd) ⊂ L2(Rd) is trivial a bounded map.

For 1ΩH
1(Rd) ⊂ 1ΩL

2(Rd) for a bounded Ω, then the inclusion map H1 → L2 is even

compact.

Lemma 4.3. Let A be a linear operator H →H . Then

1) A is bounded iff xn
n→∞−−−→ x strongly implies that Axn

n→∞−−−→ Ax strongly.

2) A is compact iff xn
n→∞−−−⇀ x weakly implies that Axn

n→∞−−−→ Ax strongly.

�

Proof. 1) Exercise.

2) Assume that A is a compact operator. If x ⇀ x weakly, then we know that (xn)n is

bounded in H by the uniform boundedness principle. By definition (Axn)n is compact

63



64 CHAPTER 4. SPECTRAL THEOREM

in H . This means that there is a subsequence (Axnk)k converging to some y in H .

We need to show that y = Ax. In fact, as A is bounded it follows that Axn
n→∞−−−⇀ Ax1,

hence it follows that y = Ax and therefore Axnk
k→∞−−−→ Ax strongly.

The convergence holds actually for the whole sequence. To see this suppose that

Axn 6→ Ax for the whole sequence. Then there exists a subsequence (Axn`)` such that

for some ε > 0 for all ` ∈ N

‖Axn` − Ax‖ > ε > 0.

But by the same argument we may find a subsequence of this subsequence that con-

verges to Ax which is a contradiction.

The converse is trivial.

q.e.d.

Definition 4.4. Let A be a bounded operator then

‖A‖ = sup
‖x‖61

‖Ax‖ = sup
x 6=0

‖Ax‖
‖x‖

<∞.

and there exists a bounded operator A∗ : H →H such that for all x, y ∈H

〈x,Ay〉 = 〈A∗x, y〉 .

A∗ is called the adjoint of A. We call A self-adjoint A = A∗ �

Remark 4.5. The existence of A∗ follows from the Riesz representation theorem. Since

y 7−→ 〈x,Ay〉

is a bounded linear functional there exists a unique z such that 〈z, y〉 = 〈x,Ay〉 for all

y ∈H . We define A∗x =: z.

From 〈x,Ay〉 = 〈A∗x, y〉 for all x, y ∈ H we see that A∗ is linear. Moreover, A∗ is

1This is the case as for each y ∈H 〈y,A·〉 is a bounded functional with norm smaller or equal to ‖y‖‖A‖.
Thus there exists a ϕ ∈H such that 〈ϕ, ·〉 = 〈y,A·〉 and therefore as 〈ϕ, xn〉 → 〈ϕ, x〉 the assertion follows.
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bounded, in fact

‖A∗‖ = sup
‖x‖61

‖A∗x‖ = sup
‖x‖61

sup
‖y‖61

| 〈x,A∗y〉 | = sup
‖y‖61

sup
‖x‖61

| 〈x,Ay〉 | = sup
‖y‖61

‖Ay‖ = ‖A‖.

�

Proposition 4.6. Let A : H →H be a bounded operator. Then

A = A∗ ⇐⇒ ∀x ∈H : 〈x,Ax〉 ∈ R

�

Theorem 4.7 (Spectral Theorem for Compact Operator). Let A : H → H be a

compact operator.

1) If A = A∗, then there exist a sequence of eigenvalues (λn)n ⊂ R and an orthonor-

mal basis of eigenvectors (un)n ⊂H of A such that

A =
∞∑
n=1

λn |un〉 〈un|

where |λn| > |λn+1| and λn
n→∞−−−→ 0.

2) In general, if A is not self-adjoint, then there exists a sequence of eigenvalues

(λn)n ⊂ C and orthonormal bases (un)n, (vn)n ⊂H such that

A =
∞∑
n=1

λn |un〉 〈vn| .

In both cases the convergence of the series of operators is taken w.r.t. the operator

norm. �

Remark 4.8. If A = A∗ is compact, then all non-zero eigenvalues are of finite multi-

plicity.

If H is finite dimensional, then A can be regarded as a (finite) matrix. For matrices
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we know that if A∗ = A, then there exists a unitary matrix U such that

U∗AU = diagonal matrix =


λ1 0 · · · 0

0 λ2

...
. . .

0 λn


with {λ1, . . . , λn} being the eigenvalues of A with “eigenfunctions”

U∗



0
...

1
...

0


.

�

Proof. 1) Assume that A = A∗.

Step 1 Consider

sup
‖u‖=1

| 〈u,Au〉 |.

We claim that there exists an optimiser for this supremum. To prove this take an

optimising sequence (ϕn)n such that ‖ϕn‖ = 1 and

| 〈ϕn, Aϕn〉 |
n→∞−−−→ sup

‖u‖=1

| 〈u,Au〉 |

Because ‖ϕn‖ = 1 this sequence is bounded, we can descend to a subsequence

and assume that ϕn
n→∞−−−⇀ u1 weakly. Because A is compact, it follows that

Aϕn → Au1 strongly. Thus

〈ϕn, Aϕn〉
n→∞−−−→ 〈u1, Au1〉 .

This holds because, if xn ⇀ x weakly and yn → y strongly, then

〈xn, yn〉 −→ 〈x, y〉 .

The proof of this is left as an exercise.
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Thus | 〈u1, Au1〉 | = sup‖u‖=1 | 〈u,Au〉 |. We only know that ‖u1‖ 6 lim infn→∞ ‖ϕn‖ =

1. To prove that ‖u1‖ = 1 assume that ‖u1‖ < 1. This would imply that

〈u,Au〉 = 0 for all u ∈ H . Hence Au = 0 for all u ∈ H , i.e. A ≡ 02. In

particular this would mean that any u ∈H is an optimiser.

This means that there exists a u1 ∈H such that ‖u1‖ = 1 and

| 〈u1, Au1〉 | = sup
‖u‖=1

| 〈u,Au〉 |

Since 〈u1, Au1〉 may either be positive or negative we have the two cases〈u1, Au1〉 = inf‖u‖=1 〈u,Au〉

〈u1, Au1〉 = sup‖u‖=1 〈u,Au〉

Thus u1 is an eigenvector of A, i.e.

Au1 = λu1, λ1 = 〈u1, Au1〉 .

which is left as an exercise.

Step 2 Define V1 = span{u1} =
{
λu1

∣∣λ ∈ C
}

and write H = V1 ⊕ V ⊥1 .

Because Au1 = λu1 it follows that A : V1 → V1 and A : V ⊥1 → V ⊥1 . In fact, if

ϕ ∈ V ⊥1 then 〈ϕ, u1〉 = 0 and thus

〈Aϕ, u1〉 = 〈ϕ,Au1〉 = λ1 〈ϕ, u1〉 = 0 ∴ Aϕ ∈ V ⊥1 .

Now consider the restricted operator A : V ⊥1 → V ⊥1 . Using the previous step with

H replaced by V ⊥1 , we can find a u2 ∈ V ⊥1 such that ‖u2‖ = 1 and

| 〈u2, Au2〉 | = sup
u∈V ⊥1
‖u‖=1

| 〈u,Au〉 |

and Au2 = λ2u2, λ2 = 〈u2, Au2〉. Further we also have |λ1| > |λ2|.

Next, define V2 = span{u1, u2} and write H = V2⊕V ⊥2 . Then we have A : V ⊥2 →

2This is the case as otherwise |〈u1,Au1〉|
‖u1‖2 6 sup‖u‖=1 | 〈u,Au〉 | = | 〈u1, Au1〉 | < 〈u1,Au1〉|

‖u1‖2 .
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V ⊥2 and we can repeat the argument to find a u3 ∈ V ⊥2 , ‖u3‖ = 1 such that

| 〈u3, Au3〉 | = sup
u∈V ⊥2
‖u‖=1

| 〈u,Au〉 |

and Au3 = λ3u3, λ3 = 〈u3, Au3〉 and |λ2| > |λ3|.

Then by induction there exists a sequence (un)n ⊂H of orthonormal vectors and

(λn)n ⊂ R such that for all n ∈ N, Aun = λnun and

|λn| = | 〈un, Aun〉 | = sup
u⊥u1,...,un−1

‖u‖=1

| 〈u,Au〉 |.

The sequence λn
n→∞−−−→ 0 and as (un)n is an orthonormal family and thus converges

weakly to 0. Therefore Aun → 0 strongly and therefore

lim
n→∞

|λn| = lim
n→∞

| 〈un, Aun〉 | = 0

Step 3 We have to prove that (un)n can be extended to be a basis of H . Suppose that

ϕ ⊥ (un)n∈N, then ϕ ∈ kerA, i.e. Aϕ = 0. Indeed, for all n ∈ N

| 〈ϕ,Aϕ〉 | 6 | 〈un, Aun〉 | = |λn|
n→∞−−−→ 0.

This means that 〈ϕ,Aϕ〉 = 0 for all ϕ ∈ V ⊥∞ , where V∞ := span(un)n. Thus

Aϕ = 0 hence V ⊥∞ ⊂ kerA.

Taking an orthonormal basis (vn)n of V ⊥∞ , then we can write

A =
∞∑
n=1

λn |un〉 〈un|+
∑
k

0 |vk〉 〈vk| .

and (un)n ∪ (vn)n form an orthonormal basis for H .

2) Now consider a general compact operator A. Then AA∗ is compact and self-adjoint.

Thus

AA∗ =
∞∑
n=1

λ2
n |un〉 〈un|

where λn → 0 and (un)n is an orthonormal basis.
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Here λ2
n > 0 as

λ2
n = 〈un, AA∗un〉 = 〈A∗un, A∗un〉 = ‖A∗un‖ > 0.

Defining vn = A∗vn
λn

for λn 6= 0, then ‖vn‖ = 1 and

Avn = A
A∗vn
λn

=
λ2
nun
λn

= λnun.

Moreover,

〈vn, vm〉 =
〈A∗un, A∗um〉

λnλm
=
〈un, AA∗um〉

λnλm
=
〈un, λ2

mum〉
λnλm

= δnm

Thus (vn)n is an orthonormal family and therefore Avnλnun for all n ∈ N where (vn)n

is an orthonormal family and (un)n is an orthonormal basis. Thus

A =
∑

λn |un〉 〈vn|

Here we can compliment (vn)n by the basis of kerA and thus make (vn)n an orthonormal

basis.

q.e.d.

Remark 4.9 (Motivation). We want to be able to define a “functional calculus”, i.e. we

are interested in how to define for A, f(A) where f is some function. E.g. if f(t) = t2,

then f(A) = A2. But for f(t) =
√
t how do we define

√
A? �

Definition 4.10 (Spectrum). Let A be a bounded operator in a Hilbert space H , then

� Resolvent of A

ρ(A) :=
{
λ ∈ C

∣∣ (λ− A)−1 is a bounded operator on H
}

� Spectrum of A

σ(A) := C \ ρ(A).

�
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Example 4.11. If λ is an eigenvalue of A, then Au = λu for some u ∈H . Thus

ker(λ− A) ⊃ span{u} 6= {0}

Thus (λ− A)−1 does not exist and λ ∈ σ(A).

Theorem 4.12 (Basic Properties of the Spectrum). Let A be a self-adjoint bounded

operator, then

� σ(A) is a compact subset of R

� sup |σ(A)| = max |σ(A)| = ‖A‖. Here sup |σ(A)| = supλ∈σ(A) |λ|.

�

Proof. 1) Take λ ∈ C and |λ| > ‖A‖. Then λ ∈ ρ(A). To see this note that λ − A =

λ(1 − λ−1A), thus it is enough to prove that 1 − λ−1A has a bounded inverse. This

follows by the first lemma below. This means that σ(A) ⊂ B(0, ‖A‖) in C.

2) We now prove that σ(A) ⊂ R. Take λ = a+ ib, a, b ∈ R and b 6= 0. We want to show

that λ ∈ ρ(A). Consider λ− A = (a− A) + ib. Then for all u ∈H

‖(λ− A)u‖2 = ‖(a− A)u‖2 + |b|2‖u‖2 + 2R 〈(a− A)u, ibu〉︸ ︷︷ ︸
=0

> |b|2‖u‖2.

This implies that λ−A is invertible with bounded inverse by the second lemma below.

3) We prove that σ(A) is closed which is equivalent to showing that ρ(A) is open.

Take λ ∈ ρ(A), then we show that λ′ ∈ ρ(A) for |λ− λ′| sufficiently small.

λ′ − A = λ′ − λ+ λ− A =
(
(λ′ − λ)(λ− A)−1 + 1

)
(λ− A).

Since (λ− A)−1 is bounded (λ′ − A)−1 is as well if ((λ′ − λ)(λ− A)−1 + 1)
−1

is. This

is the case as B = (λ′ − λ)(λ− A)−1 satisfies

‖B‖ = |λ′ − λ|‖(λ− A)−1‖ < 1

if |λ′ − λ| is small enough. Thus (1 +B)−1 is bounded.
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4) Now we prove that ‖A‖ = max |σ(A)|. We know already that sup |σ(A)| 6 ‖A‖. The

other inequality is non-trivial. By third lemma below we have to prove that

sup |σ(A)| > sup
‖u‖=1

| 〈u,Au〉 |.

Denote E := sup |σ(A)|. We shall prove that E > 〈u,Au〉 for all unit vectors u. By

the definition of E, E + t ∈ ρ(A) for all t > 0. Thus (A − E − t)−1 is bounded.

Define f(t) = 〈u, (A− E − t)−1u〉 for t > 0. Then we have by the boundedness of the

operators

f ′(t) =
〈
u, (A− E − t)−2u

〉
= ‖(A− E − t)−1u‖2 > 0.

Thus we know that f(t) is an increasing function. Moreover,

lim
t→∞

f(t) = lim
t→∞

〈
u, (A− E − t)−1u

〉
= 0.

This is left as an exercise. Thus f(t) 6 0 for t > 0, i.e. for all t > 0

〈
u, (A− E − t)−1u

〉
6 0

and thus replacing u by (A− E − t)u

〈u, (A− E − t)u〉 6 0

which implies that

〈u,Au〉 6 E + t

for all unit vectors u and t > 0. Taking the limit t→ 0 yields the result.

Thus sup |σ(A)| > sup‖u‖=1 〈u,Au〉. By the same argument,

sup |σ(A)| > sup
‖u‖=1

(−〈u,Au〉) = − inf
‖u‖=1

〈u,Au〉

hence

sup |σ(A)| > sup
‖u‖=1

| 〈u,Au〉 | = ‖A‖

q.e.d.
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Lemma 4.13. If B is a bounded operator and ‖B‖ < 1. Then (1−B)−1 is a bounded

operator and ‖(1−B)−1‖ 6 (1− ‖B‖)−1. �

Proof. Note we can define

(1−B)−1 :=
∞∑
k=0

Bk := lim
n→∞

n∑
k=0

Bk =: lim
n→∞

An

Since ‖B‖ 6 1 the right-hand side is well defined as for n < m

‖An − Am‖ =

∥∥∥∥∥
m∑

k=n+1

Bk

∥∥∥∥∥ 6
m∑

k=n+1

‖Bk‖ 6
m∑

k=n+1

‖B‖k n,m→∞−−−−→ 0.

Thus (1−B)−1 := limn→∞An is well-defined and it is a bounded operator. Moreover,

∥∥(1−B)−1
∥∥ 6 ∞∑

k=0

‖B‖k = (1− ‖B‖)−1.

The fact that (1−B)−1 is indeed the inverse follows as usual via

(1−B)(1−B)−1 = (1−B)
∞∑
k=0

Bk = 1 +
∞∑
k=1

Bk −
∞∑
k=1

Bk = 0

q.e.d.

Remark 4.14. Here we used the fact that the set B(H ) of bounded operators on H

with the operator norm is a Banach space. �

Lemma 4.15. If B is a bounded operator and ‖Bu‖ > b‖u‖ and ‖B∗u‖ > b‖u‖ for all

u ∈H then B−1 is a bounded operator. �

Lemma 4.16. If A = A∗ is a bounded operator, then

‖A‖ = sup
‖u‖=1

| 〈u,Au〉 |.
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�

Theorem 4.17 (Continuous Functional Calculus for Bounded Operators). Let A = A∗

be a bounded operator. Then there exists a unique continuous linear map

L :
C (σ(A)) −→ B(H )

f 7−→ f(A)

such that the following properties hold

1) If f is a polynomial f(t) =
∑

j ajt
j, then

f(A) =
∑
j

ajA
j.

2) ‖f(A)‖ = ‖f‖L∞.

Moreover, we also have f(A)g(A) = (fg)(A) for all f, g ∈ C (σ(A)).

This means that L is an isometry of C∗-algebra C (σ(A)). �

Proof. If f is a a polynomial, f(A) is well-defined. We need to prove that ‖f(A)‖ = ‖f‖L∞
for all polynomials f . To do this, we show that σ(f(A)) = f(σ(A)). We know that ‖f(A)‖ =

sup |σ(f(A))|. For every λ ∈ C we can write

f(t)− λ = C
∏
j

(t− tj)

for tj ∈ C, then

f(A)− λ = C
∏
j

(A− tj).



74 CHAPTER 4. SPECTRAL THEOREM

and

λ /∈ σ(f(A)) ⇐⇒ (f(A)− λ)−1 is bounded

⇐⇒ (A− tj)−1 is bounded for all j

⇐⇒ tj /∈ σ(A) for all j

⇐⇒ (t− tj)−1 is bounded for all j on σ(A)

⇐⇒ (f(t)− λ)−1 is bounded on σ(A)

⇐⇒ λ /∈ f(σ(A))

Furthermore, we thus have

‖f(A)‖ = sup |σ(f(A)| = sup |f(σ(A))| = ‖f‖∞.

By the Weierstrass theorem, we know that for any σ(A) ⊂ R compact, the polynomials on

σ(A) are dense in C (σ(A)), i.e. for all f ∈ C (σ(A)) there exists a sequence of polynomials

(fn)n such that ‖fn − f‖L∞ → 0.

Then ‖fn(A) − fm(A)‖ = ‖fn − fm‖L∞ → ∞ as n,m → ∞. Hence there exists a unique

f(A) = limn→∞ fn(A) and ‖f(A)‖ = ‖f‖L∞ .

Moreover f(A)g(A) = (fg)(A) for all polynomials and thus the same holds for all continuous

functions by the same density argument. q.e.d.

We now want to extend the functional calculus to a larger class of function f .

Theorem 4.18 (Spectral Measure). Let A = A∗ be a bounded operator on H . Then

for all u ∈H there exists a unique Borel measure µu on σ(A) such that

〈u, f(A)u〉 =

∫
σ(A)

f(x)dµu(x)

for all f ∈ C (σ(A)). Consequently ‖f(A)u‖ = ‖f‖L2(σ(A),dµu) for all f ∈ C (σ(A)) and

we can extend f 7→ f(A) for any f ∈ L2(σ(A), dµu).

�

Proof. Define the mapping

L :
C (σ(A)) −→ C

f 7−→ L (f) = 〈u, f(A)u〉
.
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Then L is linear, continuous, positive, i.e. L (f) > 0 for all f > 0. Here the positivity

follows as f > 0 implies that f = gg for some g ∈ C (σ(A)).

Then

L (f) = 〈u, f(A)u〉 = 〈u, g(A)g(A)u〉 = 〈u, g(A)∗g(A)u〉 = ‖g(A)u‖2 > 0.

as the continuous functional calculus is a C∗ algebra homomorphism. Then the result follows

from the following theorem.

Theorem 4.19 (Riesz-Markov Thorem). Let Ω be a Borel set in Rd and let L :

Cc(Ω)→ C be a linear and positive functional. Then there exists a unique Borel regular

measure µ in Ω such that

L (ρ) =

∫
Ω

f(x)dµ(x)

for all f ∈ Cc(Ω) �

Remark 4.20 (Recall). A Borel measure µ on Ω is regular if

1) µ(K) <∞ for all compact K ⊂ Ω.

2)

µ(E) = inf
{
µ(U ∩ Ω)

∣∣U open, E ⊂ U
}

= sup
{
µ(K ∩ Ω)

∣∣U open, K ⊂ E
}
�

Sketch of Proof. For simplicity assume that Ω = Rd. Then the measure µ is defined as

follows:

For all U open let

µ(U) = sup
{
L (f)

∣∣ f continuous, 0 6 f 6 1, supp f ⊂ U
}

Then if K is compact define

µ(K) = inf
{
L (f)

∣∣ f continuous, 0 6 f 6 1, f ≡ 1 on K
}
.
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Then µ can be extended to a Borel regular measure on Rd. We can prove

L (f) =

∫
f(x)dµ(x)

for all continuous f by approximation. q.e.d.

Continuation of Proof of Theorem 4.18. By the Riesz-Markov theorem, there exists a unique

regular Borel measure µu on σ(A) such that

〈u, f(A)u〉 = L (f) =

∫
σ(A)

f(x)dµu(x)

for all f ∈ C (σ(A)). Moreover,

‖f(A)u‖2 = 〈u, f(A)∗f(A)u〉 =
〈
u,
∣∣ f ∣∣ 2(A)u

〉
=

∫
σ(A)

|f |2(x)dµu(x) = ‖f‖2
L2(σ(A),dµu).

Thus ‖f(A)u‖ = ‖f‖L2(σ(A),dµu) for all f ∈ C (σ(A)). This allows us to extend the map

f 7→ f(A)u, for any f ∈ L2(σ(A), dµu), i.e. if f ∈ L2(σ(A), dµu), then take a sequence (fn)n

of continuous functions converging to f in L2(σ(A), dµu) and define

f(A)u = lim
n→∞

fn(A)u.

q.e.d.

Remark 4.21. Here we did not define f(A) but only f(A)u which is simpler. �

Theorem 4.22 (Spectral Theorem for Bounded Self-Adjoint Operators). Let A = A∗

be a bounded operator on H . Then there exists a Borel measurable set Ω ⊂ Rd, and a

Borel measure µ such that there exists a unitary mapping

U :
H −→ L2(Ω, dµ)

A 7−→Ma

i.e. UAU∗ = Ma with Ma being the multiplication operator on L2(Ω, dµ) with a function
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a, i.e.

(Maf)(x) = a(x)f(x)

for all f ∈ L2(Ω, dµ). Moreover, a is a bounded, real-valued function on Ω. We can

take Ω = σ(A)× N ⊂ R2 and a(λ, n) = λ. �

Remark 4.23. An easy way to remember this theorem is to note

A←→Ma,

i.e. A up to a unitary transformation is equivalent to a multiplication operator.

�

Example 4.24. The Fourier transform

f 7−→ f̂(k) =

∫
Rd

e−2πik·xf(x)dx

defined on L2(Rd) is a unitary operator by Placherl’s Theorem 1.33.

Proof.

Step 1 Recall that for all u ∈H , there exists a unique µu on σ(A) such that

〈u, f(A)u〉 =

∫
σ(A)

f(x)dµu(x)

for all f ∈ L2(σ(A), dµu) by the theorem on the Spectral measure.

In particular, there exists a unitary mapping

U∗u :
L2(σ(A), dµu) −→Hu

f 7−→ f(A)

where

Hu =
{
f(A)u

∣∣ f ∈ L2(σ(A), dµu)
}
⊂H
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which is a closed subspace, i.e. itself a Hilbert space, of the Hilbert space H . It is left

as an exercise to show that

Hu = span
{
Aku

∣∣ k ∈ N0

}
⊂H .

If Hu = H we are done. In this case Ω = σ(A) and a(λ) = λ and we call u a cyclic

vector.

In general, if there is no cyclic vector, then we need the lemma below.

Noting that A : Hu →Hu (why?) we can write

A =
∞⊕
n=1

Aun .

Define the unitary operator

U :
⊕
n∈N

Hun = H −→ L2(σ(A)× N) =
⊕
n∈N

L2(σ(A), dµun)

via

U :=
⊕
n∈N

Uun

Then we see that

UAU∗ =
⊕
n∈N

(
UunA

∣∣
Hun

U∗un

)
=
⊕
n

Ma(λ,n)

where a(λ, n) = λ. This is because

UunA
∣∣
Hun

U∗un :
L2(σ(A), dµun) −→ L2(σ(A), dµun)

f 7−→ Uun(Af(A)) = xf(x)

q.e.d.

Lemma 4.25. For any bounded self-adjoint operator A on H , there exists an at most

countable orthonormal family (un)n∈N such that

H = ⊕∞n=1Hun .
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�

Axiom 4.26 (Zorn’s Lemma). Let P be a partially ordered set, with order ≺, i.e. it

satisfies

1) ∀a ∈ P : a ≺ a

2) ∀a, b ∈ P : a ≺ b ∧ b ≺ a =⇒ a = b

3) ∀a, b, c ∈ P : a ≺ b ∧ b ≺ c =⇒ a ≺ c

Note that there may be elements that are not comparable, i.e. a 6≺ b and b 6≺ a.

If for all totally ordered subsets I ⊂ P (any pair (a, b) in I is comparable) there exists

a maximal element aI , i.e. a ≺ aI for all a ∈ I. Then there exists a maximal element

in P , i.e.

∃p ∈ P ∀a ∈ P : p ≺ a =⇒ p = a.

�

Proof. Let P =
{

(un)n
∣∣ (un)n is an ONF of H

}
and

(un)n ≺ (vn)n :⇐⇒
⊕

Hun ⊂
⊕

Hvn

Then Zorn’s Lemma tells us that there exists a maximal (un)n. We claim that H =⊕
n∈N Hun .

Assume that H )
⊕

n∈N Hun . Then there exists a u ∈ H, u 6= 0 and u ⊥Hun for all n ∈ N.

Because A : Hun → Hun it follows that A : (
⊕

Hun)⊥ → (
⊕

Hun)⊥. Then we can define

Hu in the usual way. Then (un)n ≺ (un)n ∪ {u} because

⊕
Hun (

⊕
Hun ⊕Hu

which is a contradiction to the maximality of (un)n. q.e.d.

Corollary 4.27 (Functional Calculus). Let A = A∗ be a bounded operator on H . Then
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there exists a unique linear map

B(σ(A),C) −→ B(H )

f 7−→ f(A)

from the set of measurable, bounded functions σ(A) → C to the bounded operators on

H , such that

1) If f(x) =
∑
tjz

j then f(A) =
∑
tjA

j.

2) ‖f(A)‖ = ‖f‖L2

3) f(A)g(A) = (fg)(A)

4) f(A)∗ = f(A)

5) f(σ(A)) = σ(f(A)), in particular if f > 0 then f(A) > 0, i.e. 〈u, f(A)u〉 > 0 for

all u ∈H .

6) (Monotone Convergence) If fn ↑ f pointwise, then fn(A) → f(A) strongly, i.e.

for all u ∈H , fn(A)u→ f(A)u strongly.

�

Proof. By the spectral theorem, there exists a unitary transformation U : H → L2(Ω, dµ),

UAU∗ = Ma is a multiplication operator. Then we can define f(A) by

Uf(A)U∗ = Mf(a)

i.e.

(Mf(a)g)(x) = f(a(x))g(x)

for all g ∈ L2(Ω, dµ). Monotone convergence now follows from the usual monotone conver-

gence for functions. q.e.d.

Theorem 4.28 (Spectral Theorem for Normal Operators). Let A be a bounded normal

operator on H , i.e. AA∗ = A∗A. Then there exists a unitary operator U : H →
L2(Ω, dµ), such that UAU∗ = Ma is a multiplication operator with a function a. Here

a is a bounded function Ω, however we do not know if a is real-valued �
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Remark 4.29. The proof is more complicated, e.g. in general f(A)∗ 6= f(A) for a

normal operator.

To prove the spectral theorem for normal operators we define the two self-adjoint op-

erators

X1 =
A+ A∗

2
, X2 = i

A− A∗

2

which commute X1X2 = X2X1. We can apply the spectral theorem to X1, X2 and

since they commute we can simultaneously diagonalise them. We can recover A =

X1 − iX2 �

4.1 Unbounded Self-Adjoint Operators

Definition 4.30. Let A : D(A)→H be a linear, unbounded operator, where D(A) ⊂
H , D(A)→H . �

Definition 4.31 (Extension). An operator B is called a extension of A, A ⊂ B, iff

D(A) ⊂ D(B) and B
∣∣
D(A)

= A. �

Definition 4.32 (Adjoint Operator). We want to define A∗ such that 〈A∗x, y〉 =

〈x,Ay〉 for all y ∈ D(A) and all x ∈ D(A∗). Here

D(A∗) :=
{
x ∈H

∣∣ ∃z ∈H ∀y ∈ D(A) : 〈z, y〉 = 〈x, y〉
}

=

=

{
x ∈H

∣∣∣∣∣ sup
y∈D(A)

| 〈x,Ay〉 | <∞

}

and we define A∗x := z. �

Remark 4.33. In general, it might happen that D(A∗) is very small and D(A∗) 6=
H . �
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Definition 4.34 (Symmetric Operator). An operator A such that for all x, y ∈ D(A)

〈Ax, y〉 = 〈x,Ay〉

is called symmetric. �

Remark 4.35. It is left as an exercise to show that A is symmetric iff 〈x,Ax〉 ∈ R for

all x ∈ D(A) which in turn is equivalent to A ⊂ A∗. �

Definition 4.36 (Self-Adjoint Operator). An operator A is called self-adjoint iff

A = A∗ (in particular D(A) = D(A∗)). �

Remark 4.37. Find example of symmetric but not self-adjoint operators. �

Definition 4.38. Let A : D(A)→H be a (densely defined) unbounded operator. The

resolvent set

ρ(A) :=
{
z ∈ C

∣∣ (z − A)−1 is well-defined as a bounded operator
}

and the spectrum is σ(A) := C \ ρ(A) �

Example 4.39 (Multiplication Operator). Let (Ω, µ) be a measure space. Let f : Ω→
C be a measurable function. Define

Mf :
D(Mf ) −→ L2(Ω, dµ)

u 7−→ (Mfu)(x) = f(x)u(x)

where D(Mf ) =
{
u ∈ L2(Ω, µ)

∣∣ fu ∈ L2(Ω, µ)
}

. Note that D(Mf ) is indeed dense in

L2(Ω, µ). (Exercise!)

This operator has the following properties

1) ‖Mf‖ = sup‖u‖L261 ‖Mfu‖L2 = ‖f‖L∞ . In particular, Mf is a bounded operator

iff f is bounded.
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2) (Mf )
∗ = Mf̄ . To see this note that

〈
Mf̄u, v

〉
=

∫
Ω

fuvdµ =

∫
Ω

ufvdµ = 〈u,Mfv〉

and D(Mf̄ ) = D(Mf ) as fu ∈ L2 iff fu ∈ L2 iff |f ||u| ∈ L2.

3) Mf is self-adjoint iff (Mf )
∗ = Mf iff f = f iff f is real-valued.

4)

σ(Mf ) = ess ran(f) =
{
z ∈ C

∣∣ ∀ε > 0 : µ(f−1(BC(z, ε))) > 0
}

=

=
{
z ∈ C

∣∣ ∀ε > 0 : µ
({
x ∈ Ω

∣∣ |f(x)− z| < ε
})

> 0
}

To see this note that z −Mf = Mz−f and thus (z −Mf )
−1 = M(z−f)−1 . This is a

bounded operator iff (z − f) is bounded, i.e. ‖(z − f)−1‖L∞ <∞.

Example 4.40. If f : Rd → R, f(x) = |x|2. Then Mf is a self-adjoint multiplication

operator on L2(Rd) and

σ(Mf ) = ess ran
(
x 7→ |x|2

)
= [0,∞)

Theorem 4.41 (Basic Properties of the Spectrum). Let A : D(A)→H be a (densely

defined) unbounded operator on a Hilbert space H .

1) σ(A) is a closed set in C.

2) If A is self-adjoint (A = A∗) then σ(A) ⊂ R.

3) If A is symmetric and σ(A) ⊂ R then A is self-adjoint.

�

Proof. 1) We proof that ρ(A) is open. Take z0 ∈ ρ(A), then we prove that z ∈ ρ(A) if

|z − z0| is small enough. We have

(z − A)−1 = (z − z0 + z0 − A)−1 =
((

(z − z0)(z0 − A)−1 + I
)
(z0 − A)

)−1
=

= (z0 − A)−1
(
I + (z − z0)(z0 − A)−1

)−1
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where we used that (z0 −A)−1 is a well-defined, bounded operator. Then if |z − z0| is

small enough ‖(z− z0)(z0−A)−1‖ < 1 and thus (I + (z − z0)(z0 − A)−1)
−1

is bounded

by Lemma 4.13.

2) Assume that A = A∗. We prove that σ(A) ⊂ R. Take z ∈ C \ R, then we prove that

(z − A)−1 is bounded. Consider z = ±i. We see that

‖(A+ i)x‖2 = 〈(A+ i)x, (A+ ix)〉 = ‖Ax‖2 + ‖x‖2.

This implies that A ± i is injective and, together with the self-adjointness of A, that

ran(A± i) = H .

� ran(A + i) is dense in H , because if y ⊥ ran(A + i) then y ∈ ker(A + i)∗ =

ker(A− i) = {0}.

� ran(A + i) is closed. Take (A + i)xn → a, we need to prove that a ∈ ran(A + i).

Because (A+ i)xn is Cauchy sequence it follows by the above inequality that

‖(A+ i)xn − (A+ i)xm‖2 > ‖Axn − Axm‖2 + ‖xn − xm‖2

and thus (Axn)n and (xn)n are both Cauchy sequences. Thus Axn → y and

xn → x in H .

We need to prove that x ∈ D(A) and Ax = y. We know that A is self-adjoint,

A = A∗, thus it is sufficient to prove that x ∈ D(A∗). We need to show that

sup
ϕ∈D(A)
‖ϕ‖61

| 〈x,Aϕ〉 | <∞

We have for all ϕ ∈ D(A).

〈x,Aϕ〉 = lim
n→∞

〈xn, Aϕ〉 = lim
n→∞

〈Axn, ϕ〉 = 〈y, ϕ〉 .

Thus by definition, x ∈ D(A∗) = D(A) and Ax = y, as D(A) is dense.

Thus

a = lim
n→∞

(A+ i)xn = (A+ i)x

with x ∈ D(A), i.e. a ∈ ran(A+ i). Thus ran(A+ i) is closed.

The same analysis also holds true for A− i.



4.1. UNBOUNDED SELF-ADJOINT OPERATORS 85

This means that A ± i is surjective and thus (A ± i)−1 is well-defined. Moreover,

‖(A± i)x‖ > ‖x‖ thus ‖(A± i)−1‖ 6 1.

This proves that z = ±i ∈ ρ(A). In general, if z ∈ C \R, then z = R z + i=z, =z 6= 0.

Then

z − A = R z + =z − A =

(
i+

R z − A
=z

)
=z

Since R z−A
=z is still a self-adjoint operator and we may apply the previous result thus

(z − A)−1 is bounded.

This concludes

A = A∗ =⇒ σ(A) ⊂ R.

3) Assume that σ(A) ⊂ R and that A is symmetric.

Then ±i ∈ ρ(A). (The same prove as above holds since symmetric operators are

closed.) Thus (A± i)−1 is bounded.

We prove that D(A∗) = D(A). Take x ∈ D(A∗), then there exists y ∈ D(A) such that

(A+ i)y = (A∗ + i)x

this implies that for all z ∈ D(A)

〈y, (A− i)z〉 = 〈(A+ i)y, z〉 = 〈(A∗ + i)x, z〉 = 〈x, (A− i)z〉

as A is symmetric. Thus y = x because ran(A− i) = H and hence x ∈ D(A).

q.e.d.

Theorem 4.42 (Spectral Theorem for Unbounded Self-Adjoint Operators). Let A :

D(A)→ H be a self-adjoint operator on a Hilbert space. Then there exists a measure

space (Ω, µ) such that Ω is a Borel subset of Rd, µ is a regular Borel measure and there

exists a unitary operator U : H → L2(Ω, µ) such that

UAU∗ = Ma

for some measurable function a : Ω→ R.
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Moreover UD(A) = D(Ma) =
{
u ∈ L2

∣∣ au ∈ L2
}

.

We can take Ω = σ(A)× N ⊂ R2 and a(λ, n) = λ. �

Proof. We know that S = (A+i)−1 is a bounded operator as i ∈ ρ(A). Further S∗ = (A−i)−1

and S∗S = SS∗. Thus S is a normal operator.

Applying the spectral theorem for the bounded normal operator S we find a measure space

(Ω, µ) and a unitary operator

U : H −→ L2(Ω, µ)

such that USU∗ = Mf for some bounded function f : Ω→ C.

Now we want to find a function a : Ω → R such that UAU∗ = Ma. Using S = (A + i)−1 it

follows that A = S−1 − i thus we might guess that a = f−1 − i.
We now have to prove that this choice makes sense. Here f 6= 0 a.e. because from USU∗ =

Mf we know that σ(S) = σ(Mf ) = ess ran(f), however we know that 0 ∈ ρ(S) and thus

0 /∈ ess ran(f). To see this suppose that f ≡ 0 on B ⊂ Ω with µ(B) > 0. Then u = 1B

is a non-zero function with Mfu = 0, which means that 0 is an eigenvalue of Mf . Since

USU∗ = Mf this means that 0 is also an eigenvalue of S. Thus there exists a ϕ 6= 0 such

that Sϕ = 0, however we then have

0 = (A+ i)Sϕ = (A+ i)(A+ i)−1ϕ = ϕ

which is a contradiction.

Note that f−1 might have singularities and hence a might not be bounded.

Thus we can define a = f−1 − i and we have

UAU∗ = U(S−1 − i)U∗ = US−1U − i = (USU∗)−1 − i = M−1
f − i = Mf−1 − i = Ma

Here a is a real-valued function because UAU∗ = Ma is self-adjoint. It is easy to check that

UD(A) = D(Ma).

q.e.d.

Theorem 4.43 (Functional Calculus of Self-Adjoint Operators). Let A : D(A) → H

be a self-adjoint operator on a Hilbert space H .
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Then there exists a unique linear map

Φ :
B(σ(A),C) −→ B(H )

f 7−→ f(A)

such that

1) If f = 1 (i.e. f(x) = 1 for all x ∈ σ(A)) then f(A) = I (the identity on H ).

2) ‖f(A)‖ = ‖f‖L∞

3) f(A)∗ = f(A)

4) f(A)g(A) = (fg)(A)

5) f(σ(A)) = σ(f(A))

6) Monotone Convergence: Let fn ↑ f pointwise, then fn(A) → f(A) strongly, i.e.

for all u ∈H , fn(A)u→ f(A)u.

Dominated Convergence: Let fn → f pointwise, and supn ‖fn‖L∞ < ∞ then

fn(A)→ f(A) strongly.

7) If AB = BA is well-defined, then f(A)B = Bf(A) for all bounded functions f .

�

Proof. By the spectral theorem we have UAU∗ = Ma. Define f(A) by Uf(A)U∗ = Mf(a),

i.e. (Mf(a)u)(x) = f(a(x))u(x). q.e.d.

Remark 4.44. We used the seventh property to prove the Spectral theorem for normal

operators. �

Example 4.45. Let A = (−∆) on L2(Rd). We that Fourier transform F is a unitary

operator and

Ãf(k) = |2πk|2f̂(k),

i.e.

F(−∆)F∗ = M|2πk|2
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Consequently σ(−∆) = [0,∞) and

D(−∆) =
{
u ∈ L2(Rd)

∣∣ |2πk|2û(k) ∈ L2
}

= H2(Rd)

−∆ is only self-adjoint on D(−∆).



Algebras of Observables

Classical Mechanics

An experiment is represented by a function A(r,p) on phase space Γ. Further it is physically

reasonable to assume that A is a bounded function, as any experiment has only a finite range

of possible results.

We can give this observable the supremum norm

‖A‖∞ := sup
(r,p)∈Γ

|A(r,p)| <∞

A state is given by a certain reproducible procedure of preparing the system. Then

ω : 〈A〉ω =
1

N

N∑
n=1

a
(ω)
i ∈ R

is called the result of the measurement A for the state ω.

To a high precision we have 〈Am〉ω = 〈A〉mω .

The properties of ω are

� normalised: ω(1) = 1

� it is a linear functional: A → C(R) where A denotes the algebra of observables

� positivity: for A(x, p) > 0, ω(A) > 0.

ω(A) =

∫
Γ

ρ(x, p)A(x, p)dxdp

6

C∗ Algebra

89
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The experiments A are elements of a (C∗) algebra A .

A state is a linear, positive functional on A , i.e. for A,B ∈ A and λ ∈ C

ω(λA) = λω(A), ω(A+B) = ω(A) + ω(B)

Further we assume that

� Normalisation: ω(1) = 1

� Positivity: A is positive, i.e. if A = B∗B then ω(A) > 0.

Two observables are called equal

A = B :⇐⇒ ∀ω : ω(A) = ω(B).

Note that these definitions apply that if A+B = C

ω(C) = ω(A) + ω(B).

However, it is very much unclear what it means to take the sum of experiments.

We define a norm on A by taking

‖A‖ = sup
ω
|ω(A)|.

Definition 4.46 (Algebra). An algebra A is

1. A is a complex vector space

2. A has an associative multiplication operation.

3. the multiplication is distributive with respect to the addition in A and the mul-

tiplication by scalars

4. A contains a unit for the multiplication operation

�
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Definition 4.47 (∗-Algebra). A is an algebra equipped with a complex conjugation or

adjoint operation ∗ : A → A satisfying

(PQ)∗ = Q∗P ∗, (P +Q)∗ = P ∗ +Q∗

(αQ)∗ = αQ∗, (Q∗)∗ = Q

�

Definition 4.48 (C− - Algebra). A C−-algebra is a C∗-algebra equipped with a norm

which further satisfies

� ‖PQ‖ 6 ‖P‖‖Q‖

� ‖Q∗‖ = ‖Q‖

� ‖QQ∗‖ = ‖Q‖‖Q∗‖

� ‖1‖ = 1

�

Definition 4.49 (Classes of Elements on a C∗-Algebra). 1. Self-Adjoint or Hermitean:

Q∗ = Q

2. Unitary: Q∗Q = QQ∗ = 1

3. Normality: QQ∗ = Q∗Q

4. Projector: Q2 = Q = Q∗

5. Positive: there exists C ∈ A : Q = C∗C

�

Definition 4.50 (Resolvent Set and Spectrum). The resolvent set of A ∈ A is

ρ(A) =
{
z ∈ C

∣∣ (A− z)−1 ∈ A
}
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The spectrum is the compliment of the resolvent. �

Remark 4.51. Using the same argument as in the case of operators on Hilbert spaces

we may conclude that the resolvent set is open. �

Proposition 4.52 (Spectral Properties). � Hermitean: σ(A) ⊂ R

� Unitary: σ(U) ⊂ S1

� Projector: σ(P ) = {0, 1}

� Positive: σ(Q) ⊂ [0,∞)

�

Remark 4.53. A state is a positive linear functional, i.e. ω(A∗A) > 0. �

Example 4.54. 1) Classical: A state is a function ρ on phase space satisfying

ρ(x, p) > 0,
∫
ρ = 1 and the action being given by∫

Γ

ρ(x, p)A(x, p)dxdp.

2) Quantum 1: For the bounded operators B(H ) of a Hilbert space H the observ-

ables are unit vectors ψ ∈H with the action being given by

〈ψ,Aψ〉 .

3) Quantum 2: We can alternatively form the density operator ρψ = |ψ〉 〈ψ|, where

ρ is a positive operator of trace 1. The state action is given by

Tr ρA.
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Proposition 4.55. For a positive linear functional ω on A we have the following

“Cauchy-Schwartz” inequality

|ω(A∗B)|2 6 ω(A∗A)ω(B∗B)

In particular this implies that ω is bounded and thus continuou. �

States form a convex space, i.e. let ω1, ω2 be two states then the for all λ ∈ [0, 1], ω =

λω1 + (1− λ)ω2 is again a state.

Definition 4.56 (Pure and Mixed States). A state is called pure if cannot be repre-

sented as a non-trivial convex combination of two states.

Otherwise a state is called mixed. �

Proposition 4.57. Any state ω can be written as a convex combination of pure states

(αi)i∈N such that

ω =
∑
i

λiαi,
∑
i

λi = 1, λi > 0.

�

Definition 4.58 (Abelian Algebra). An algebra is Abelian if all elements commute. �

Definition 4.59 (Algebraic ∗-Homomorphism). A map π : A → B between ∗-algebras

is called a ∗-homomorphism if

� π(AB) = π(A)π(B)

� π(αA+ βB) = απ(A) + βπ(B)

� π(A∗) = π(A)∗

�
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Definition 4.60. A character χ is a ∗-homomorphism of A → C such that

(1) If exists (χ(A)− z)−1 if z ∈ σ(A) then χ(A) ∈ σ(A).

(2) χ is positive, i.e. χ(A∗A) = χ(A∗)χ(A) = χ(A)∗χ(A) > 0

(3) Any χ is a state: χ(A1) = χ(A)χ(1), hence χ(1) = 1

(4) Cauchy-Schwartz |χ(A∗B)|2 6 χ(A∗A)χ(B∗B).

(5) Characters are pure states.

(6) There exist a character such that χ(A) = ‖A‖

�

Definition 4.61. The weak ∗-topology V, V ∗ define

Bv,ε(W
∗) =

{
U∗ ∈ V ∗

∣∣ |W (v)− U∗(v)| < ε
}

for W ∗ ∈ V ∗, v ∈ V . �

Definition 4.62. X(A) is set of all characters, the set of all continuous functions

f : X(A)→ C ∼ A for any A ∈ A ???? �

Theorem 4.63 (Gel’fand Isomorphism). An Abelian C∗ algebra is isomorphic to the

weak ∗-continuous function C (X) on the character set X = X(A). Norm on C (X) is

given by the supremum norm

‖f‖ = sup
χ∈X
|f(χ)|.

Furthermore it is an isometry w.r.t. to this norm, i.e. ‖A‖ = ‖fA‖. �

Proof. (1) We define A 7→ fA, via the natural inclusion into the double dual, i.e. fA(χ) =

χ(A). This is a ∗-homomorphism, as χ is one, e.g.

fAB(χ) = χ(AB) = χ(A)χ(B) = fA(χ)fB(χ).
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This inclusion map is naturally injective, as continuous linear functionals separate

points.

(2) The Gel’fand map preserves the norm as

‖A‖ = sup
χ∈X
|χ(A)| = ‖f‖

To see the first equality note that for all states we have per definitionem |χ(A)| 6 ‖A‖
and there exists a pure state such that |ω(A)| = ‖A‖.

(3) The main problem is to prove surjectivity: For any f ∈ C (X) there exist Af such that

fAf = f for any polynomial.

This obviouslyholds for polynomials. Thus by the “Weierstrass” theorem: any contin-

uous function on a compact set on X can be arbitrarily well-approximated by polyno-

mials. Compact is taken here w.r.t. ∗-topology.

Holes: Existence of ω such that ω(A) = ‖A‖, GNS construction, compactness and the Stone-

Weierstrass theorem.

q.e.d.

Let AA be the algebra generated by 1, A,A∗, i.e. all polynomial expressions of the form∑
amnA

n(A∗)m and the closure under the norm of the algebra.

AA is commutative hence it follows that is isomorphic to C (XA).

Definition 4.64 (Representation onA onB(H )). A representation π of the C∗-algebra

A is a ∗-homomorphism of A into B(H ).

If π is injective, then the representation is called faithful. Two representation are called

equivalent, if there exists an isomorphism U : H1 →H2 if for all A ∈ A

π2(A) = Uπ1(A)U−1

�

Definition 4.65 (Invariant Subspace). Let V ∈H be a subspace of H . V is called

an invariant subspace of π(A) iff

∀A ∈ A : v ∈ V =⇒ π(A)v ∈ V
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�

Definition 4.66. A vector c ∈H is called cyclic for a representation π if

C :=
{
π(A)c

∣∣A ∈ A}
is dense in H , i.e. C = H . �

Definition 4.67 (Irreducible Representation). A representation is called irreducible

on of the two equivalent properties holds

(1) The only closed invariant subspaces V ⊂H are {0} and H .

(2) Any vector ϕ ∈H is cyclic.

�

Definition 4.68 (GNS - Construction (Gel’fand, Naimark, Segal)). A C∗-algebra A
induces a Hilbert space using a state ω.

We define a scalar product A,B ∈ A via 〈A,B〉 := ω(A∗B). This hermitean, however,

it is not necessarily strictly positive.

To remedy this define

Nω =
{
A ∈

∣∣ω(A∗A) = 0
}
.

and then the induced scalar product on A/Nω is strictly positive. The completion of

A/Nω is a Hilbert space. �

Remark 4.69. Irreducible representations of a commutative algebra are one-dimensional.

�

Definition 4.70 (GNS - Representation). Let B ∈HGNS with B ∈ A, then define the
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representation π : A → B(HGNS) via

π(A)B = AB.

�

Remark 4.71. � The GNS representation for a pure state is irreducible.

� For any given representation of A on H , an element ψ ∈H defines a pure state

via

ωψ(A) = 〈ψ,Aψ〉

The corresponding subspace
{
π(A)ψ

∣∣A ∈ A}, is invariant and isomorphic to the

GNS Hilbert space.

�
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Chapter 5

Self-Adjoint Extensions

Remark 5.1 (Question). Given a symmetric operator A, can we find a self-adjoint

extension B of A., i.e. D(B) ⊃ D(A), B
∣∣
D(A)

= a and B = B∗. Thus A ⊂ B = B∗ ⊂
A∗.

It is left as an exercise to show that if A : D(A) → H and B : D(B) → H are

symmetric operators and A ⊂ B then B∗ ⊂ A∗, i.e.

A ⊂ B ⊂ B∗ ⊂ A∗

�

Method 1 (Closure) Given A : D(A)→H symmetric. Define its closure

A : D(A)→H as follows:

Let ‖x‖A := ‖Ax‖+ ‖x‖ for all x ∈ D(A)

D
(
A
)

:= D(A)
‖·‖A

=

=
{
x ∈H

∣∣∣ ∃(xn)n ⊂ D(A), (xn)n Cauchy w.r.t. ‖ · ‖A : x = lim
n→∞

xn in H
}

=

=
{
x ∈H

∣∣∣ ∃(xn)n ⊂ D(A) : ‖xn − xm‖A
n,m→∞−−−−→ 0 : x = lim

n→∞
xn in H

}
This is well-defined because A is a symmetric operator. More precisely, if (xn)n is a Cauchy

sequence in ‖ · ‖A, then (Axn)n and (xn)n are Cauchy sequences in H . Thus we have in H

Axn
n→∞−−−→ y, xn

n→∞−−−→ x

99
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Here the limit y = limAxn is independent of the choice of (xn)n. Indeed if (x′n)n is another

sequence in D(A) such that

Ax′n
n→∞−−−→ y′, x′n

n→∞−−−→ x

Then y = y′ because for all ϕ ∈ D(a)

〈y, ϕ〉 = lim
n→∞

〈Axn, ϕ〉 = lim
n→∞

〈xn, Aϕ〉 = 〈x,Aϕ〉 = lim
n→∞

〈x′n, Aϕ〉 = lim
n→∞

〈Ax′n, ϕ〉 = 〈y′, ϕ〉

and thus y = y′ as D(A) is dense in H .

Definition 5.2. We define the closure of symmetric operator A : D(A) → H to be

the operator defined on D(A) via Ax := limn→∞Axn, where (xn)n ⊂ D(A) is a Cauchy

sequence w.r.t. ‖ · ‖A and xn → x in H .

By the above this well-defined for all x ∈ D(A). �

Remark 5.3. Often A is already a self-adjoint operator, in which case we are done.

For example let A = −∆ on D(A) = C∞c (Rd) ⊂ H = L2(Rd). Then since ‖ · ‖∆ =

‖ −∆(·)‖+ ‖ · ‖ is equivalent to ‖ · ‖H2 we find that

D(A) = C∞c (Rd)
‖·‖A

= C∞c (Rd)
‖·‖H2

= H2(Rd)

and as we have already proven −∆u for u ∈ H2(Rd) is just the extension of −∆ on

C∞c (Rd). Since −∆ on H2(Rd) is self-adjoint A is as well. �

Example 5.4. Let A = −∆ − 1
|x| on C∞c (R3) be the Hydrogen atom Hamiltonian.

Then D(A) = H2(R3) and Au =
(
−∆− 1

|x|

)
u for all u ∈ H2(R3).

Here the proof is not trivial! For all u ∈ H2(Rd), −∆u ∈ L2 per definitionem and

−u(x)
|x| ∈ L

2 by the Hardy-Littlewood-Sobolev inequality Theorem 1.30.

But the inverse is more difficult: Does
(
−∆− 1

|x|

)
u ∈ L2 for u ∈ L2 imply that

u ∈ H2(R3)?

In particular does −∆u− u(x)
|x| ∈ L

2 imply that −∆u and u(x)
|x| ∈ L

2?
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Example 5.5 (Counter Example to Closure Being Self-Adjoint). Let A = −i d
dx

on

D(A) = C∞c (0, 1) ⊂H = L2(0, 1).

Then A is symmetric (which can be checked easily via integration by parts). But

D
(
A
)

= C∞c (0, 1)
‖·‖A

= C∞c (0, 1)
‖·‖H1

= H1
0 (0, 1) :=

{
u ∈ H1(0, 1)

∣∣u(0) = u(1) = 0
}
.

However,

D
(
A
∗
)

=
{
u ∈ L2

∣∣ sup
v∈D(A)
‖v‖L261

|
〈
u,Av

〉
L2 | <∞

}
= H1(0, 1)

where checking the last equality is left as an exercise. Hence A is not self-adjoint.

Definition 5.6. If A = A, i.e. D(A) is closed w.r.t. ‖ · ‖A = ‖A · ‖+ ‖ · ‖, then we call

A a closed operator. �

Proposition 5.7. Assume that A : D(A)→H is symmetric, A ⊂ B and B is closed

and symmetric. Then A ⊂ B ⊂ A∗.

This means that A is the smallest closed extension of A and A∗ is the largest closed

extension of A. In particular A∗ is closed. �

Proof. Exercise! q.e.d.

Definition 5.8. Let A : D(A)→H be a symmetric operator. If A is self-adjoint then

we call A essentially self-adjoint. �

Theorem 5.9. Let A : D(A)→H by symmetric. Then the following are equivalent

(1) A is self-adjoint.

(2) σ(A) ⊂ R

(3) ran(A± i) = H

�



102 CHAPTER 5. SELF-ADJOINT EXTENSIONS

Proof. The first two items are just a reformulation of Theorem 4.41 and third follows from

their proof. q.e.d.

In fact we have the even stronger result

Proposition 5.10. Let A : D(A) → H be a symmetric operator. If σ(A) 6= C, then

A is closed. �

Proof. Exercise! q.e.d.

Theorem 5.11. Let A : D(A)→H be symmetric. Then the following are equivalent.

(1) A is essentially self-adjoint.

(2) ran(A± i) is dense in H .

�

Proof. Easy once one has proven that ran
(
A± i

)
= ran(A± i) which is left as exercise.

q.e.d.

Method 2 (Kato-Rellich Method) Assume that A : D(A)→H is self-adjoint. When

is A+B : D(A)→H is self-adjoint, if B is a small “perturbation” of A?

Theorem 5.12 (Kato-Rellich). Let A : D(A) → H be self-adjoint, B : D(A) → H

symmetric. If for some ε < 1 and some Cεv

‖Bx‖ 6 ε‖Ax‖+ Cε‖x‖

holds for all x ∈ D(A), we say that ε is an A-bound for B, then A + B is self-adjoint

on D(A+B) = D(A), i.e. “small perturbations” do not destroy self-adjointness. �

Lemma 5.13. Let A and B be as above. Then for all µ > 0, B(A+ iµ)−1 is a bounded

operator and

lim sup
µ→∞

‖B(A± iµ)−1‖ 6 ε



103

where ε is the A-bound of B. �

Proof. Because A is self-adjoint, iµ ∈ ρ(A) for all µ > 0 thus (A ± iµ)−1 is a bounded

operator with

(A± iµ)−1 : H −→ D(A)

thus B(A± iµ)−1 is well-defined on H . We have

∥∥B(A± iµ)−1
∥∥ = sup

x∈H
x 6=0

‖B(A± iµ)−1x‖
‖x‖

= sup
y∈D(A)
y 6=0

‖By‖
‖(A± iµ)y‖

6 sup
y∈D(A)
y 6=0

ε‖Ay‖+ Cε‖y‖
‖(A± iµ)y‖

=

= sup
y∈D(A)
y 6=0

ε‖Ay‖+ Cε‖y‖√
‖Ay‖2 + µ2‖y‖2

6 sup
y∈D(A)
y 6=0

ε‖Ay‖+ Cε‖y‖
max{‖Ay‖, µ‖y‖}

6 ε+
Cε
µ

where the penultimate inequality follows from
√
a2 + b2 > max{|a|, |b|}. q.e.d.

Proof of Theorem 5.12. To show that A + B is self-adjoint in on D(A), we need to prove

that ran(A+B ± iµ) = H for some µ > 0.

We have A+B + iµ = (1 +B(A+ iµ)−1)(A+ iµ). Here (A+ iµ)−1 is well-defined because

A is self-adjoint. Then

(A+B + iµ)(D(A)) =
(
1 +B(A+ iµ)−1

)
(A+ iµ)(D(A)) =

(
1 +B(A+ iµ)−1

)
(H )

Then this is equal to H if 1 + B(A + iµ)−1 has an inverse. This holds true when ‖B(A +

iµ)−1‖ < 1 by Lemma 4.13. Then we can apply the lemma which in particular states that

‖B(A+ iµ)−1‖ 6 ε+
Cε
µ
.

Since ε < 1 for µ large enough this is indeed smaller than 1. q.e.d.

Theorem 5.14 (Kato-Rellich for Schrödinger Operators). Consider the operator A =

−∆ + V on D(A) = H2(Rd), where V is some real-valued potential function. This is

self-adjoint if V ∈ Lp(Rd) + Lq(Rd) for 2 6 p, q 6∞, for d = 1, 2, 3. �

Remark 5.15. If f ∈ Lp(Rd) for some 1 6 r 6 p 6∞, then we can write f = f1 + f2

with f1 ∈ Lr(Rd) and f2 ∈ L∞(Rd).

Moreover, we can take f1 such that ‖f1‖Lr 6 δ for any δ > 0.
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This statement can be proven using dominated convergence and its proof is left as an

exercise. �

Proof. Because V is real valued, A = −∆ + V is symmetric and we only need to verify that

‖V u‖L2 6 ε‖ −∆u‖L2 + Cε‖u‖L2

for some ε < 1. In particular this also shows that MV : D(A)→H is well-defined.

This is equivalent to

‖V u‖L2 6 ε‖u‖H2 + Cε‖u‖L2

and we shall prove that this holds for all ε > 0.

By assumption we can write V = V1 + V2 ∈ L2 + L∞ with ‖V1‖L2 6 δ.

By the Sobolev inequality Theorem 3.23 we have for d = 1, 2, 3, L∞(Rd) ⊂ H2(Rd) and thus

‖V u‖L2 6 ‖V1u‖L2 + ‖V2u‖L2 6 ‖V1‖L2‖u‖L∞ + ‖V2‖L∞‖u‖L2 6 δCd‖u‖H2(Rd) + Cδ‖u‖L2

Choosing Cdδ = ε yields the result. q.e.d.

Example 5.16. A = −∆ − 1
|x| is self-adjoint on D(A) = H2(Rd), on L2(R3). This is

the case by Kato-Rellich as

V (x) = − 1

|x|
= − 1

|x|
1{|x|61} −

1

|x|
1{|x|>1} ∈ Lp(R3) + L∞(R3)

for any p < 3.

In particular, since for all u ∈ L2(R)3 such that Au =
(
−∆u− 1

|x|

)
u ∈ L2 then

u ∈ H2(R3) and −∆u,−u(x)
|x| ∈ L

2

In fact, A = −∆ − 1
|x|s is self-adjoint on D(A) = H2(R3) for all s < 3

2
by the same

proof.

But A = −∆− 1
|x|s with s > 3

2
cannot be extended to a self-adjoint operator on H2(R3).

For this the Kato-Rellich theorem is not enough.

5.1 Quadratic Forms

Let A : D(A) → H be self-adjoint operator. Assume that A > 1, i.e. that 〈u,Au〉 > ‖u‖2

for all u ∈ D(A).
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Then D(A) is a Hilbert space with ‖x‖A = ‖Ax‖, 〈x, y〉A = 〈Ax,Ay〉.

Definition 5.17 (Quadratic From Domain). Let Q(A) = D(A)
‖·‖Q(A)

, where ‖x‖2
Q(A) =

〈x,Ax〉 for all x ∈ D(A).

Equivalently

Q(A) =
{
x ∈H

∣∣∣x = lim
n→∞

xn in H and (xn)n ⊂ D(A) is a ‖ · ‖Q(A)-Cauchy sequence.
}
�

Remark 5.18. Note that this also implies that xn
n→∞−−−→ x in

(
Q(A), ‖ · ‖Q(A)

)
. Thus

Q(A) is a Hilbert space with norm ‖ · ‖Q(A).

Conversely, Q(A) contains the information of (A,D(A)) in the sense that x ∈ D(A) iff

x ∈ Q(A) and

sup
y∈Q(A)
‖y‖61

∣∣∣〈x, y〉Q(A)

∣∣∣ <∞.
� Indeed, if x ∈ D(A) then for all y ∈ D(A) then 〈x, y〉Q(A) = 〈x,Ay〉 = 〈Ax, y〉.

By denseness it follows that 〈x, y〉Q(A) = 〈Ax, y〉 for all y ∈ Q(a).

Thus supy∈Q(A)
‖y‖61

∣∣∣〈x, y〉Q(A)

∣∣∣ 6 ‖Ax‖ <∞.
� If x ∈ Q(A) and supy∈Q(A)

‖y‖61

∣∣∣〈x, y〉Q(A)

∣∣∣ <∞. Then

y 7−→ 〈x, y〉Q

is a continuous, linear functional on (Q(A), ‖ · ‖Q) (trivially from the Schwartz in-

equality), but also a continuous linear functional on (Q(A), ‖ · ‖) and by denseness

also on the whole Hilbert space H . Thus by the Riesz representation theorem

there exists a unique z ∈ H such that 〈x, y〉Q = 〈z, y〉 for all y ∈ Q(A) and in

particular also 〈x,Ay〉 = 〈z, y〉 for all y ∈ D(A). Thus x ∈ D(A∗) = D(A) as

A∗ = A.

�
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Example 5.19. Take A = 1−∆ on L2(Rd). D(A) = H2(Rd) and Q(A) = H2(Rd)
‖·‖Q(A)

where ‖u‖Q(A) =
√
〈u, (1−∆)u〉L2 = ‖u‖H1(Rd), i.e. Q(A) = H1(Rd).

Example 5.20. Take A = Ma on L2(Ω, µ) for a > 1, then

D(A) =
{
u ∈ L2

∣∣ au ∈ L2
}

Q(A) =
{
u ∈ L2

∣∣√au ∈ L2
}

because

‖u‖Q(A) =
√
〈u,Au〉L2 =

√
〈u, au〉L2 = ‖

√
au‖L2 .

Remark 5.21. If A is self-adjoint and A > 1 then Q(A) = D
(√

A
)

. Here
√
A is

defined via Spectral theorem and functional calculus. It satisfies

√
A > 0,

(√
A
)2

= A.

�

Remark 5.22 (Friedrich Self-Adjoint Extension). Take a symmetric A : D(A) → H

with A > 1. Then proceeding as follows

(A,D(A)) −→
(
〈·, ·〉Q(A) , Q(A)

)
closing−−−→

(
〈·, ·〉Q(Ã) , Q(Ã)

)
−→

(
Ã,D(Ã)

)
we get a self-adjoint extension Ã of A. In general only A ⊂ Ã holds. �

Theorem 5.23 (Friedrich’s Extension). Take A : D(A)→H , A > 1. Define ‖u‖Q =√
〈u,Au〉 for u ∈ D(A) and Q(A) = D(A)

‖·‖Q(A)
as above.
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Define AF : D(AF )→H as

D(AF ) =

x ∈ Q(A)

∣∣∣∣∣∣∣ sup
y∈Q
‖y‖61

∣∣∣〈x, y〉Q∣∣∣ <∞
 =

=
{
x ∈ Q(A)

∣∣∣∃z ∈H ∀y ∈ Q(A) : 〈x, y〉Q = 〈z, y〉
}

and AFx = z for all x ∈ D(AF ).

Then AF is a self-adjoint operator and Q(AF ) = Q, AF
∣∣
D(A)

= A. �

Proof. 1) D(A) ⊂ D(AF ) because if x ∈ D(A), then for all y ∈ D(A)

〈x, y〉Q = 〈Ax, y〉

and thus by denseness supy∈Q(A)
‖y‖61

∣∣∣〈x, y〉Q∣∣∣ <∞ and therefore x ∈ D(AF ).

In particular, D(AF ) is dense in (H , ‖ · ‖H ) and it is also dense in (Q(A), ‖ · ‖Q).

2) We prove that AF is a symmetric operator. Take x, y ∈ D(AF ) ⊂ Q(A). Then

〈AFx, y〉 = 〈x, y〉Q = 〈y, x〉Q = 〈AFy, x〉 = 〈x,AFy〉 .

3) We prove that D(AF ) = D(A∗F ). Assume that x ∈ D(A∗F ) then

sup
y∈D(AF )
‖y‖61

|〈x,AFy〉| <∞

Then by the lemma below x ∈ Q and thus 〈x,AFy〉 = 〈x, y〉Q and therefore

sup
y∈D(AF )
‖y‖61

∣∣∣〈x, y〉Q∣∣∣ <∞
holds. Since D(AF ) is dense in (Q(A), ‖ · ‖Q) we have

sup
y∈Q(A)
‖y‖61

∣∣∣〈x, y〉Q∣∣∣ <∞ ∴ x ∈ D(AF ).

Thus D(AF ) is self-adjoint, AF
∣∣
D(A)

= A, ‖x‖Q(AF ) = ‖x‖Q(A) and therefore Q(AF ) =

Q(A). q.e.d.
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Lemma 5.24. If x ∈H , and supy∈D(A)
‖y‖61

|〈x,Ay〉| <∞, then x ∈ Q. �

Proof. BecauseD(A) is dense in H , there exists a sequence (xn)n ⊂ D(A) such that xn
n→∞−−−→

x in H . Then for all y ∈ D(A)

〈x,Ay〉 = lim
n→∞

〈xn, Ay〉 = lim
n→∞

〈xn, y〉Q

Then for all n ∈ N, y 7→ 〈xn, y〉Q is a linear, continuous functional (Q, ‖ · ‖Q) → C and

‖Ln‖ = ‖xn‖Q.

The assumption that

sup
y∈D(A)
‖y‖61

∣∣∣ lim
n→∞

〈xn, Ay〉
∣∣∣ <∞

implies by the uniform boundedness principle that supn∈N ‖xn‖Q <∞.

Descending to a subsequence we may assume that xn ⇀ z in Q by the Banach-Alaoglu

Theorem 1.20 and therefore also xn ⇀ z in H and since xn → x strongly in H it follows

that x = z ∈ Q. q.e.d.

Remark 5.25. If A is a bounded from below, i.e. A > −C for some constant C, then

we can define the Friedrichs extension of A by

AF = (A+ C + 1)F − C − 1.

�

Example 5.26. Let A = −∆ − 1
|x|s in L2(R3). If s < 3

2
, then A is self-adjoint on

D(A) = H2(R3) by Kato-Rellich. If 3
2
6 s < 2, then

〈u,Au〉 =

∫
|∇u|2 −

∫
|u(x)|2

|x|s
ds

is well-defined on H1(Rd). Then we can define a self-adjoint operator AF : D(AF ) →
H = L2(R3) by the Friedrichs extension.

Note that D(AF ) 6= H2(R3) but Q(AF ) = H1(R3).
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Remark 5.27. If A : D(A) → H , A > −C then there exist self-adjoint extensions

Amin, Amax such that if B is a self-adjoint extension of A, then

Amin 6 B 6 Amax

in the sense that

〈u,Aminu〉 6 〈u,Bu〉 6 〈u,Amaxu〉 .

In fact, Amax = AF and Amin is the so-called Krein extension. �
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Chapter 6

Quantum Dynamics

Given A : D(A)→H . We want to solvei ddtx(t) = Ax(t), for t ∈ R

x(0) = x0

If A is a bounded, self-adjoint operator, then this equation has a unique solution

x(t) = e−itAx0

for all x0 ∈H . Here

e−itA =
∞∑
n=0

(−itA)n

n!

is well-defined, bounded operator, as A is. Since A is self-adjoint e−itA is a unitary operator

on H , i.e.
∥∥e−itAx0

∥∥ = ‖x0‖.

Theorem 6.1 (Stone’s Theorem). Let A : D(A)→H be a self-adjoint operator. Then

the equation i ddtx(t) = Ax(t), for t ∈ R

x(0) = x0

has a unique solution for all x0 ∈ D(A). In fact

x(t) = e−itAx0

111
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where e−itA is defined via the Spectral theorem. Here the derivative means that for all t

lim
s→0

x(t+ s)− x(t)

s
= Ax(t)

strongly in H . �

Proof. 1) Assume that A = Ma on H = L2(Ω, µ) and D(A) =
{
x
∣∣ ax ∈ L2

}
. Then

x(t)(ξ) = e−ita(ξ)x0(ξ) ∈ L2.

Moreover, x0 ∈ D(A) implies that ax0 ∈ L2, thus also ax(t) ∈ L2 and therefore

x(t) ∈ D(A).

The key-point here is that
∣∣e−ita(ξ)

∣∣ = 1.

2) Generally, for A : D(A)→H self-adjoint, we have by the Spectral theorem a unitary

operator U : H → L2(Ω, µ) such that UAU∗ = Ma. Then you define

e−itA = U∗Me−itaU.

and then x(t) = e−itAx0 is well-defined.

3) The differential equation holds as

i
d

dt
e−ita(ξ) = a(ξ)e−ita(ξ)

4) Concerning the conservation of the norm note that

d

dt
‖x(t)‖2 =

d

dt
〈x(t), x(t)〉 =

〈
d

dt
x(t), x(t)

〉
+

〈
x(t),

d

dt
x(t)

〉
=

= 〈−iAx(t), x(t)〉+ 〈x(t),−iAx(t)〉 = 0

Thus ‖x(t)‖ = ‖x0‖ for all t ∈ R.

5) Concerning uniqueness assume that x(t) and y(t) are two solutions of differential equa-

tion, then z(t) = x(t)− y(t) solvesi ddtz(t) = Az(t), for t ∈ R

z(0) = 0
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then by conservation of norm ‖z(t)‖ = ‖z(0)‖ = 0, i.e. x(t) = y(t) for all t ∈ R.

q.e.d.

Theorem 6.2 (Stone’s Theorem, Weak Solution). Let A : D(A)→H be self-adjoint.

Then the equation i
d

dt
x(t) = Ax(t)

x(0) = x0 ∈H

has a unique weak solution x(t) ∈H , i.e. for all ϕ ∈ D(A) d
dt
〈ix(t), ϕ〉 = 〈x(t), Aϕ〉

x(t)
t→0−−→ x0 strongly in H

Moreover, the unique weak solution is x(t) = e−itAx0. �

Proof. 1) Take x(t) = e−itAx0 ∈ H . Then x(t)
t→0−−→ x0 strongly as follows from the

Spectral theorem and dominated convergence.

Take ϕ ∈ D(A). We prove that

d

dt
〈ix(t), ϕ〉 = 〈x(t), Aϕ〉

By the Spectral theorem, we can assume that A = Ma on L2(Ω, µ).

Then the above equation becomes

d

dt

∫
ie−ita(ξ)x0(ξ)ϕ(ξ)dξ =

∫
ie−ita(ξ)x0(ξ)a(ξ)ϕ(ξ)dξ

which is equivalent to

lim
s→t

∫
(−i)e

ita(ξ) − eisa(ξ)

t− s
x0(ξ)ϕ(ξ)dξ =

∫
ie−ita(ξ)x0(ξ)a(ξ)ϕ(ξ)dξ

This is correct by dominated convergence as for all ξ ∈ Ω

lim
s→t

eita(ξ) − eisa(ξ)

t− s
= ia(ξ)eita(ξ)
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and we have the majorant∣∣∣∣eita(ξ) − eisa(ξ)

t− s

∣∣∣∣ =

∣∣∣∣ei(t−s)a(ξ) − 1

t− s

∣∣∣∣ =

√
(cos((t− s)ξ)a(ξ)− 1)2 + sin((t− s)a(ξ))2

|t− s|
6

6 2|a(ξ)|

Here ϕ ∈ D(A) implies that a(ξ)ϕ(ξ) ∈ L2 and thus that x0(ξ)a(ξ)ϕ(ξ) ∈ L1. We

conclude that x(t) = e−itAx0 is a weak solution.

2) Assume that x(t) is a weak solution. We need to prove that x(t) = e−itAx0. The

difficulty is that

d

dt
〈x(t), x(t)〉 = 2R

〈
d

dt
x(t), x(t)

〉
= −2R 〈iAx(t), x(t)〉

does not make sense as we only know that x(t) ∈H .

Indeed, take any ϕ ∈ D(A), then

d

dt

〈
x(t), e−itAϕ

〉
=

〈
d

dt
x(t), e−itAϕ

〉
+

〈
x(t),

d

dt
e−itAϕ

〉
=

=
〈
x(t), iAe−itAϕ

〉
+
〈
x(t), (−i)Ae−itAϕ

〉
= 0

where we have to justify the first equality. Indeed,

d

dt

〈
x(t), e−itAϕ

〉
= lim

s→t

〈
x(t), e−itAϕ

〉
−
〈
x(s), e−isAϕ

〉
t− s

=

= lim
s→t

〈
x(t)− x(s)

t− s
, e−itAϕ

〉
+ lim

s→t

〈
x(t),

e−itAϕ− e−isAϕ
t− s

〉
=

=
〈
x(t), iAe−itAϕ

〉
+
〈
x(t), (−i)e−itAϕ

〉
= 0

We may conclude that, if x(t) is a weak solution, then for all ϕ ∈ D(A) and all t ∈ R

〈
x(t), e−itAϕ

〉
= 〈x0, ϕ〉

Consequently, since e−itAx0 is another weak solution then

〈
e−itAx0, e

−itAϕ
〉

= 〈x0, ϕ〉
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thus for all ϕ ∈ D(A) and all t ∈ R

〈
x(t)− e−itAx0, e

−itAϕ
〉

= 0

choosing ϕ = eitAϕ0 for some ϕ0 ∈ D(A) yields that for all ϕ0 ∈ D(A)

〈
x(t)− e−itAx0, ϕ0

〉
= 0

hence by the denseness of D(A) in H

x(t) = e−itAx0

for all t ∈ R.

q.e.d.

Remark 6.3. If x(t) is a weak solution, then ‖x(t)‖ = ‖x0‖ for all t ∈ R. �

Definition 6.4. A family of unitary operators
{
U(t)

∣∣ t ∈ R
}

on Hilbert space H is

called a strongly continuous one-parameter unitary group if

� U(t+ s) = U(t)U(s) = U(s)U(t)

� lims→t U(s)x = U(t)x strongly in H for all x ∈H .

�

Theorem 6.5 (Stone’s Theorem, Strongly Continuous One-Parameter Unitary Group).

1) If A : D(A) → H is self-adjoint, then U(t) = e−itA for t ∈ R forms a strongly

continuous one-parameter unitary group.

2) If
{
U(t)

∣∣ t ∈ R
}

is a strongly continuous one-parameter unitary group, then there

exists a unique self-adjoint operator A : D(A) → H such that U(t) = e−itA.
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Moreover,

D(A) =

{
x ∈H

∣∣∣∣ limt→0

U(t)x− x
t

exists strongly in H

}
and for all x ∈ D(A)

Ax := i lim
t→0

(U(t)− 1)x

t
.

A is called the infinitesimal generator of
{
U(t)

∣∣ t ∈ R
}

.

�

Proof. 1) Trivial by the above!

2) Define the operator A : D(A)→H via

D(A) =

{
x ∈H

∣∣∣∣ limt→0

U(t)x− x
t

exists weakly in H

}
=

=

{
x ∈H

∣∣∣∣ ∃z ∈H ∀ϕ ∈H : lim
t→∞

〈
(U(t)− 1)x

t
, ϕ

〉
= 〈z, ϕ〉

}
and for all x ∈ D(A)

Ax := iw-lim
t→0

(U(t)− 1)x

t
.

Step 1 We prove hat D(A) is dense in H . For all x ∈H and f ∈ C∞c (R), define

xf =

∫
R

f(t)U(t)xdt

where t 7→ U(t)x is continuous. We prove that xf ∈ D(A). Indeed,

U(t)− 1

t
xf =

∫
R

U(t)− 1

t
f(s)U(s)xds =

∫
R

f(x)
U(t+ s)− U(s)

t
xds =

=

∫
R

f(s− t)− f(s)

t
U(t)xds

Now interchange the limit t → 0 by using the dominated convergence theorem for

Bochner integrals as for all t ∈ R there is some ξ ∈ (s− t, t) such that∣∣∣∣f(s− t)− f(s)

t

∣∣∣∣ = |f ′(ξ)| 6 ‖f ′‖L∞ <∞
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where the last estimate follows from the compact support of f and thus f ′. Thus

lim
t→∞

U(t)− 1

t
xf = lim

t→0

∫
R

f(s− t)− f(t)

t
U(s)xds = −

∫
R

f ′(s)U(s)xds = −xf ′

Thus for all x ∈H and all f ∈ C∞c (R)

lim
t→∞

U(t)− 1

t
xf = −xf ′

strongly in H . This means that xf ∈ D(A) for all x ∈H and all f ∈ C∞c (R).

Now we need to prove that for all x ∈H there exists a sequence (fn)n ⊂ C∞c (R) such

that xfn
n→∞−−−→ x strongly in H .

Take any f ∈ C∞c with
∫
f = 1 and define fn(t) = nf(nt). Then

xfn =

∫
R

fn(s)U(s)xds =

∫
R

nf(ns)U(s)xds =

∫
R

f(t)U

(
t

n

)
x︸ ︷︷ ︸

n→∞−−−→x

dt
n→∞−−−→

∫
R

f(t)x = x

strongly in H . Thus D(A) is dense in H . We may again interchange the limit n→∞
and the integral by the dominated convergence theorem for Bochner integrals as∥∥∥∥f(t)U

(
t

n

)
x

∥∥∥∥ = |f(t)|
∥∥∥∥U( tn

)
x

∥∥∥∥ = |f(t)|‖x‖

which is an integrable majorant.

Step 2 We need to prove that A is symmetric. For x, y ∈ D(A) we have by the assumed weak

convergence

〈x,Ay〉 = lim
t→0

〈
x, i

U(t)− 1

t
y

〉
= lim

t→0

〈
−iU(t)∗ − 1

t
x, y

〉
= lim

t→0

〈
i
U(−t)− 1

−t
x, y

〉
=

= 〈Ax, y〉

where we used that for a unitary operator U(t)∗ = U(t)−1 = U(−t) as

U(t)U(−t) = U(−t)U(t) = U(0) = I.
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Step 3 We need to prove that A is self-adjoint, i.e. D(A∗) = D(A). Take x ∈ D(A∗), i.e.

sup
y∈D(A)
||y‖61

| 〈x,Ay〉 | <∞ ∴ sup
y∈D(A)
||y‖61

∣∣∣∣limt→0

〈
x, i

U(t)− 1

t
y

〉∣∣∣∣ <∞
Since

lim
t→0

〈
x, i

U(t)− 1

t
y

〉
= lim

t→0

〈
i
U(−t)− 1

−t
x, y

〉
= lim

t→0

〈
i
U(t)− 1

t
x, y

〉
it follows that

sup
y∈D(A)
||y‖61

∣∣∣∣limt→0

〈
i
U(t)− 1

t
x, y

〉∣∣∣∣ <∞
If we define for all y ∈ D(A)

Lt(y) :=

〈
i
U(t)− 1

t
x, y

〉
then Lt can be extended to be a bounded functional on H and since limt→0 Lt(y) is

finite it follows that for every y ∈H

sup
t∈R
|Lt(y)|

is bounded. Note that ‖Lt‖ 6 2
t
‖x‖ which is bounded for |t| → ∞.

Thus by the uniform bounded principle, supt ‖Lt‖ 6 C <∞, i.e. for all t∥∥∥∥U(t)− 1

t
x

∥∥∥∥ 6 C

Take any sequence tn
n→∞−−−→ 0, then the sequence(

U(tn)− 1

tn
x

)
n

is bounded in H and thus by the Banach-Alaoglu Theorem 1.20 we can assume by

descending to a subsequence that

U(tn)− 1

tn
x

n→∞−−−⇀ z ∈H



119

weakly. Here the limit z is independent of the choice of (tn)n as for all ϕ ∈ D(A)

〈z, ϕ〉 = lim
n→∞

〈
U(tn)− 1

tn
x, ϕ

〉
= lim

n→∞
,

〈
U(−tn)− 1

tn
xϕ

〉
= 〈x,−iAϕ〉

Then because the limit z is unique we can conclude that

U(t)− 1

t
x

t→0−−⇀ z

Thus for all x ∈ D(A∗) there limit w-limt→
U(t)−1

t
x exists and thus x ∈ D(A).

Therefore A = A∗.

Step 4 We show that U(t) = e−itA. We can easily check that U(t)A = AU(t) on D(A). We

know that for all x ∈ D(A) that iU(t)−1
t

x ⇀ Ax, thus x(t) = U(t)x is a weak solution

to i ddtx(t) = Ax(t)

x(0) = x

i.e. for all ϕ ∈ D(A)
d

dt
〈ix(t), ϕ〉 = 〈x(t), Aϕ〉 .

Thus x(t) = U(t)x and e−itAx are two weak solutions thus U(t)x = e−itAx for all

x ∈H by the uniqueness of weak solutions. Hence U(t) = e−itA

Step 5

D(A) =

{
x ∈H

∣∣∣∣w-lim
t→0

U(t)− 1

t
x exists

}
=

=

{
x ∈H

∣∣∣∣ limt→0

U(t)− 1

t
x exists

}
q.e.d.

Remark 6.6. In Mathematical Quantum Mechanics we are generally interested in the

following three questions

� Is A self-adjoint?

� σ(A) spectral properties
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� What is the behaviour of e−itA as t→∞. Scattering Theory.

�



Chapter 7

Bound States

Remark 7.1. Consider the spectrum of the Hydrogen atom Schrödinger operator A =

−∆ + V (x), V (x) = − 1
|x| . This potential goes to 0 at infinity and its spectrum consists

of two parts:
{
λ ∈ σ(A)

∣∣λ < 0
}

which is discrete, i.e. its is made up of disjoint points,

and
{
λ ∈ σ(A)

∣∣λ > 0
}

which is continuous. �

Definition 7.2. Let A : D(A)→H be a self-adjoint operator.

The discrete spectrum is defined to be

σdisc(A) :=
{
λ ∈ σ(A)

∣∣λ is an eigenvalue with finite multiplicity
}
.

The essential spectrum is its compliment

σess(A) := σ(A) \ σdisc(A).

λ ∈ σess(A) iff λ is not an eigenvalue or it has infinite multiplicity.

�

Remark 7.3. Recall that λ is an eigenvalue of A iff there exists a non-zero vector in

D(A) such that

Av = λv.

�

121
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Theorem 7.4 (Weyl Sequences). Let A : D(A) → H be a self-adjoint operator and

λ ∈ C. Then

1) λ ∈ σ(A) iff there exists a of unit-vectors sequence (un)n ⊂ D(A) such that

‖(A− λ)un‖
n→∞−−−→ 0

The sequence (un)n is called a singular sequence, or Weyl sequence for λ.

2) λ ∈ σdisc(A) iff λ ∈ σ(A) and any Weyl sequence (un)n for λ is pre-compact, i.e.

it contains a subsequence (unk)k converging strongly in H .

3) λ ∈ σess(A) iff there exists a Weyl sequence (un)n converging weakly to 0 in H

or equivalently iff there exists an orthonormal Weyl sequence (un)n for λ.

�

Proof. By the spectral theorem we may assume w.l.o.g. that A = Ma on L2(Ω, µ) and

σ(A) = ess ran(a).

1) Let λ ∈ σ(A). We have to find a Weyl sequence (un)n, i.e. a sequence of function

satisfying ‖un‖L2 = 1, ‖aun‖L2 <∞ and ‖(a− λ)un‖
n→∞−−−→ 0, i.e.

lim
n→∞

∫
Ω

|a(ξ)− λ|2|un(ξ)|2dµ(ξ) = 0.

By assumption we have λ ∈ σ(A) = ess ran(a), i.e. for all ε > 0

µ
({
ξ
∣∣ |a(ξ)− λ| < ε

})
> 0.

We choose

un =
1{|a(ξ)−λ|< 1

n}
µ
({
|a(ξ)− λ| < 1

n

})
for which ‖un‖L2 = 1 holds. Then∫

Ω

|a(ξ)− λ|2|un(ξ)|2dµ(ξ) 6
∫
Ω

1

n2
|un(ξ)|2dµ(ξ) =

‖un‖2
L2

n2
=

1

n2

n→∞−−−→ 0

Conversely, assume that there exists a Weyl sequence (un)n for λ. We have to prove
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that λ ∈ σ(A) = ess ran(a). Assume that λ /∈ ess ran(a) then there exists a ε > 0 such

that

µ({|a− λ| < ε}) = 0.

Then |a(ξ)− λ| > ε for almost every ξ ∈ Ω. It follows that

0
∞←n←−−−

∫
Ω

|a(ξ)− λ|2|un(ξ)|2dµ(ξ) > ε2

∫
Ω

|un(ξ)|2dµ(ξ) > ε2

where the leftmost convergence from the fact that (un)n is a Weyl sequence. This is a

contradiction. E

2) Assume that λ ∈ σdisc(A) and let (un)n be a Weyl sequence for λ. We have to prove

that (un)n is pre-compact. By the lemma below it follows from λ ∈ σdisc(A) that there

exists an ε > 0 such that

µ
(
a−1((λ− ε, λ+ ε) \ {λ})

)
= 0

Then since (un)n is Weyl sequence

0
∞←n←−−−

∫
Ω

|a(ξ)− λ|2|un(ξ)|2dµ(ξ) =

∫
a−1(λ)

· · ·+
∫

Ω\a−1(λ)

· · · >
∫

a−1(λ)

ε2|un(ξ)|2dµ(ξ)

thus ∫
a−1(λ)

|un(ξ)|2dµ(ξ)
n→∞−−−→ 0.

It therefore suffices to show that

(
1a−1(λ)un(ξ)

)
n

is pre-compact in L2. However, as λ ∈ σdisc(A) iff λ is an eigenvalue of Ma with

finite multiplicity which in turn is equivalent to 1a−1(λ)L
2 being a non-empty, finite-

dimensional subspace of L2(Ω, µ).

Thus since (un)n is bounded,
(
1a−1(λ)un(ξ)

)
n

is a bounded subset of a finite-dimensional

Hilbert space and is thus pre-compact.
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Note here that u is an eigenfunction of Ma with eigenvalue of λ, iff

Mau = λu ⇐⇒ a(ξ)u(ξ) = λu(ξ) for a.e. ξ ⇐⇒

⇐⇒ a(ξ) = λ for a.e. ξ ∈ supp(u) ⇐⇒

⇐⇒ u is supported on a−1(λ) ⇐⇒

⇐⇒ u ∈ 1a−1(λ)L
2(Ω, µ) the eigenspace of Ma with eigenvalue λ.

Conversely, assume that λ ∈ σ(A) and that for every Weyl sequence (un)n, there exists

a subsequence converging strongly. We have to prove that λ ∈ σdisc(A).

We shall fist prove that λ is an isolated point in σ(A) = ess ran(a). Assume that λ is

not an isolated point. The for all ε > 0

µ
(
a−1((λ− ε, λ+ ε) \ {λ})

)
> 0.

Choose a positive, monotonously decreasing sequence (εn)n converging to 0 such that

the following sequence of sets have positive measure

Bn :=
(
a−1((λ− εn, λ− εn+1) ∪ (λ+ εn+1, λ+ εn))

)
Define un :=

1Bn
µ(Bn)

, then (un)n is a Weyl sequence, as ‖un‖L2 = 1, and

∫
Ω

|a(ξ)− λ|2|un(ξ)|2dµ(ξ) 6
∫
Ω

ε2
n|un(ξ)|dµ(ξ) = ε2

n
n→∞−−−→ 0.

But (un)n is an orthonormal family because suppun ∩ suppum = ∅ if n 6= m. Thus

un
n→∞−−−⇀ 0 weakly. Thus un cannot have any strongly convergent subsequence since

any possible limit would need to have norm 1 which is a contradiction to the above. E

If λ is an isolated point of ess ran(a) then a−1(λ) has to have positive measure (why?).

Thus λ is an eigenvalue with eigenvector

u =
1a−1(λ)

µ(a−1(λ))
.

Moreover, the eigenspace of λ has to finite-dimension, for otherwise we could choose

an infinite sequence (un)n of orthonormal vectors within it. This would form a Weyl

sequence weakly converging to zero contradicting its pre-compactness.
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3) Let λ ∈ σess(A). We need to find a Weyl sequence (un)n that is an orthonormal family.

If λ possesses an infinite-dimensional eigenspace, then we can choose an orthonormal

basis (un)n of that eigenspace which would also be a Weyl sequence.

If λ is not an isolated point in ess ran(a), then for all ε > 0

µ
(
a−1((λ− ε, λ+ ε) \ {λ})

)
> 0

Then we can define a Weyl sequence (un)n as above, with suppun ∩ suppum = ∅ for

n 6= m thus forming an orthonormal basis.

Conversely, if there exists a Weyl sequence (un)n, such that un
n→∞−−−⇀ 0 weakly. Then

λ /∈ σdisc(A) and thus λ ∈ σess(A).

q.e.d.

Lemma 7.5. λ ∈ σdisc(A) implies that λ is an isolated point in the spectrum of A, i.e.

there exists an ε > 0 such that

µ
(
a−1((λ− ε, λ+ ε) \ {λ})

)
= 0

�

7.1 Weyl Theory

Definition 7.6. Let A : D(A) → H be a self-adjoint operator and B : D(A) →
H . We say that B is A-relatively compact iff B(A + i)−1 is a compact operator on

H , or equivalently for every bounded sequence (un)n in (D(A), ‖ · ‖A), there exists a

subsequence (unk)k such that Bunk converges strongly in H (why?). �

Theorem 7.7 (Weyl). Let A : D(A)→H be a self-adjoint operator and B : D(A)→
H symmetric and A-relatively compact. Then

1) B is A-relatively bounded with arbitrarily small bound ε, i.e. for all ε > 0, there
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exists a constant Cε such that for all u ∈ D(A)

‖Bu‖ 6 ε‖Au‖+ Cε‖u‖.

Consequently, A+B is self-adjoint on D(A) by the Kato-Rellich Theorem 5.12.

2) σess(A+B) = σess(A).

�

Proof. 1) We shall prove this by showing that for any ε > 0

lim
µ→∞

‖B(A+ iµ)−1‖ < ε

or equivalently

lim
µ→∞

‖B(A+ iµ)−1‖ = 0

For µ > 0 write

B(A+ iµ)−1 = B(A+ i)−1︸ ︷︷ ︸
compact

(A+ i)(A+ iµ)−1︸ ︷︷ ︸
bounded

The result now directly follows from the lemma below.

2) Let λ ∈ σ(A) then there exists a Weyl sequence of unit vectors (un)n ⊂ D(A), such

that (A − λ)un
n→∞−−−→ 0 and un

n→∞−−−⇀ 0. Then to prove that (un)n is a Weyl sequence

for A+B it suffices to show that Bun
n→∞−−−→ 0 strongly in H .

To see this note that

Bun = B(A+ i)−1(A− λ+ λ+ i)un = B(A+ i)−1︸ ︷︷ ︸
compact

(
(A− λ)un︸ ︷︷ ︸

n→∞−−−→0

+ (λ+ i)un︸ ︷︷ ︸
n→∞−−−⇀0

) n→∞−−−→ 0

strongly.

The converse follows by replacing A with A + B and B with −B as B, and thus −B
are relatively A+B-compact. To see this note that

B(A+B + i)−1 = B
((

1 +B(A+ i)−1
)
(A+ i)

)−1
= B(A+ i)−1︸ ︷︷ ︸

compact

(
1 +B(A+ i)−1

)−1
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The rightmost operator is bounded. To see this note that as B(A+ i)−1 is compact

B(A+ i)−1 =
∑
n

λn |vn〉 〈vn| .

Then 1 + B(A+ i)−1 has a bounded inverse iff there is an open neighbourhood of −1

not disjoint from (λn)n. This is the case since −1 ∈ ρ(B(A + i)−1). Suppose that

−1 ∈ σ(B(A+ i)−1) then it must be an eigenvalue and therefore there must exist some

u ∈H such that

B(A+ i)−1u = −u ⇐⇒ Bv = −(A+ i)v ⇐⇒ (A+B)v = −iv

where v ∈ D(A) such that (A + i)v = u, which exists since A is self-adjoint. Now the

rightmost equality is a contradiction since A+B is self-adjoint.

q.e.d.

Lemma 7.8. (i) Let A be a self-adjoint operator. Then for all u ∈H

lim
µ→∞

∥∥(A+ i)(A+ iµ)−1u
∥∥ = 0.

(ii) Let B be a compact operator, and (An)n a sequence of bounded operator such that

for all u ∈H , ‖Anu‖
n→∞−−−→ 0, then ‖BAn‖

n→∞−−−→ 0.

�

Proof. Exercise! q.e.d.

Example 7.9. Let V : Rd → R be a potential with V ∈ L2(Rd) + Lp(Rd), 2 6 p <∞.

Then V (−∆)-relatively compact (Exercise!), and thus

σess(−∆ + V ) = σess(−∆) = [0,∞)

For example this holds for V (x) = − 1
|x| in R3.
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7.2 Bound States

Definition 7.10. Let A be a self-adjoint operator. If u is an eigenfunction of A with

eigenvalue λ outside the essential spectrum, then u is called a bound state. �

We shall now investigate two questions concerning bound states:

1) How many bound states are there?

2) What are the basic properties of bound states.

Theorem 7.11 (Min-Max Principle). Let A : D(A) → H be a self-adjoint operator

and bound from below. Define the nth min-max value or singular value for n ∈ N to be

µn = inf
M⊂D(A)
dimM=n

max
u∈M
‖u‖=1

〈u,Au〉

1) µn is increasing, i.e. µ1 6 µ2 6 · · · with µn
n→∞−−−→ µ∞ where µ∞ = inf σess(A).

2) If µn < µ∞, then µn is the nth lowest eigenvalue of A.

�

Proof. Look at

µ1 = inf
u∈D(A)
‖u‖=1

〈u,Au〉 = inf σ(A) ∈ σ(A)

There are two possibilities.

1) If µ1 = µ∞, we need to prove that µ∞ = inf σess(A). We know that

µ∞ = µ1 = inf σ(A) 6 inf σess(A)

so it is enough to prove that µ∞ ∈ σess(A).

2) If µ1 < µ∞, we need to prove that µ1 is an eigenvalue.

Then we proceed by an induction argument: Split H = W ⊕W⊥, W = span{u1}, where

Au1 = µ1u1 then A : W → W and thus A : W⊥ → W⊥. Thus we consider A
∣∣
W⊥

instead for

which we have

µn
(
A
∣∣
W⊥

)
= µn+1(A).



7.2. BOUND STATES 129

Let us check the details. By the spectral theorem, we may assume w.l.o.g. that A = Ma on

L2(Ω, ν). Consider

µ1 = inf
‖u‖=1

〈u,Au〉 = inf σ(A).

� If µ1 is an isolated point of σ(A) or if ν(a−1(µ1)) > 0, then µ1 is an eigenvalue of A (the

proof of this is similar to that of Weyl theory) and we can proceed by the induction

argument.

If µ1 has infinite multiplicity then trivially µn = µ1 for all n ∈ N.

� If µ1 is not an isolated point of σ(A), and ν(a−1(µ1)) = 0 (i.e. µ1 ∈ σess(A)) then we

have µ1 = µ∞. Indeed, we will prove that µn = µ1 for all n ∈ N.

Since µ1 ∈ σ(A) we have for all ε > 0

ν
(
a−1(µ1 − ε, µ1 + ε)

)
> 0

but for any positive, monotonous zero sequence (εn)n

lim
n→∞

ν
(
a−1(µ1 − εn, µ1 + εn)

)
= ν

(
a−1(µ1)

)
= 0

Furthermore, we can choose the sequence in such a way that

ν
(
a−1(µ1 − εn, µ1 + εn)

)
> ν

(
a−1(µ1 − εn+1, µ1 + εn+1)

)
Then define ϕn =

1Ωn√
ν(Ωn)

where

Ωn = a−1((µ1 − εn, µ1 + εn) \ (µ1 − εn+1, µ1 + εn+1))

which is an orthonormal family in L2(Ω). DefineMm,n := span{ϕm, ϕm+1, . . . , ϕm+n−1),

dimMm,n = n. Then for all u ∈Mn with ‖u‖ = 1

〈u,Au〉 =

∫
Ω

a(ξ)|u(ξ)|dν(ξ) 6 max
k=m,...,m+n−1

〈ϕk, Aϕk〉 6 µ1 + εm

Thus for all m ∈ N
µn(A) 6 max

u∈Mm,n

‖u‖=1

〈u,Au〉 6 µ1 + εm
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taking m to infinity we thus find that

µn(A) 6 µ1

which proves the claim that µ1 = µ∞ and together with the case of an eigenfunction

of infinite multiplicity, then if µ1 ∈ σess(a) then µ∞ = inf σess(A) and µ∞ = inf σess(A).

q.e.d.

Remark 7.12.1) (Max-Min Principle) We also have

µn(A) = sup
Mn−1⊂D(A)8

dimMn−1=n−1

inf
u⊥Mn−1

‖u‖=1

〈u,Au〉 .

In particular if µ, . . . , µn−1 are eigenvalues with eigenfunctions u1, . . . , un−1 then

µn(A) = inf
u⊥{u1,...,un−1}

‖u‖=1

〈u,Au〉

2) µn(A) is determined by the quadratic form of A, i.e.

µn(A) = inf
M⊂Q(A)
dimM=n

max
u∈M
‖u‖=1

Q(u)

where Q(u) = 〈u,Au〉 if u ∈ D(A). If B is a symmetric operator bounded from below

let BF be its Friedrichs extension then

µn(B) = µn(BF ).

3) The mapping A 7→ µn(A) is monotone

A > B =⇒ µn(A) > µn(B).

and thus for B > 0

µn(A+B) > µn(A).

�
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Theorem 7.13. Consider A = −∆ + V on L2(R3) with V ∈ L2 + Lp, ∞ > p > 2.

Then A is self-adjoint on D(A) = H2 and σess(A) = [0,∞).

1) If V (x) 6 − 1
|x|a for |x| large enough and 0 < a < 2, then A infinitely many

negative eigenvalues.

2) If V (x) > − 1
|x|a for |x| large and a > 2, then A has finitely many negative

eigenvalues.

�

Sketch of Proof. 1) From the min-max principle, we need to show that µn(A) < 0 =

inf σess(A) = µ∞ for all n > 1. We have to find an orthonormal family (ϕn)n with

disjoint support such that 〈ϕn, Aϕn〉 < 0 for all n > 1.

2) Again by the min-max principle we have to prove that fro some µn(A) > 0 for n large

enough. Note that

A = −∆ + V = −∆

2
+ V 1|x|6R +

(
−∆

2

)
︸ ︷︷ ︸
> 1

8|x|2

+V 1|x|>R︸ ︷︷ ︸
>− 1
|x|

> −∆

2
+ V 1|x|6R =: B

for R large enough since a > 2. So µn(A) > µn(B) and it suffice to prove that

µn(B) > 0 if n is large. This step allows us to assume that V has compact support.

Assume that B infinitely many eigenvalues below 0, i.e. there exists an orthonormal

family (un)n of eigenfunctions such that

−1

2
∆un + V un = µnun

We can check that un is bound in H2(R3) thus by the Sobolev embedding theorem

un
n→∞−−−→ u strongly in L∞loc. On the other hand, (un)n is an orthonormal family and

thus weakly converges to 0 in L2. Hence un → 0 in L∞loc.

V un → 0 strongly in L2 because V ∈ L2 and V has compact support. Thus

−∆un = −V un + µnun
n→∞−−−→ 0
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strongly in L2. However, (−∆− µn)un = −V un hence ‖un‖ = 1 and

un = − (−∆− µn)−1︸ ︷︷ ︸→ (−∆)−1 V un︸︷︷︸
→0

which is a contradiction (why?).

Another way of seeing this is by proving that

√
|V |un = − sgn(V )

√
|V |(−∆− µn)−1

√
|V |
√
|V |un

where
√
|V |(−∆− µn)−1

√
|V | is a compact operator.

q.e.d.

Theorem 7.14 (Schrödinger Operator with Trapping Potential). Consider A = −∆ +

V on L2(R3), V ∈ L3/2
loc, V (x) → ∞ as |x| → ∞. Then: A is bounded from below and

can be extended to be a self-adjoint operator by Friedrichs extension. Moreover, A has

a compact resolvent, i.e. (A+ z)−1 is compact for all z ∈ ρ(A).

Consequently, there exists an orthonormal basis (un)n and µn ↑ ∞ such that Aun =

µnun. �

Proof. By the min-max principle we need to show that µn ↑ ∞. Assume by contradiction

that µn
n→∞−−−→ µ∞ < ∞. Thus µ∞ ∈ σess(A). Consequently there exists a singular Weyl

sequence (ϕn)n of orthonormal vectors, converging weakly to 0, such that

‖(A− µ∞)ϕn‖L2
n→∞−−−→ 0

Then we can show that ϕn is bounded in H1 and thus by descending to a subsequence we

have that ϕn → 0 in Lploc(R3) for p < 6.

Then

〈ϕn, Aϕn〉 =

∫
|∇ϕn|2 +

∫
V |ϕn|2 >

∫
V |ϕn|2 =

∫
|x|6R

V |ϕn|2 +

∫
|x|>R

V |ϕn|2

and ∫
|x|>R

V |ϕn|2 > inf
|x|>R

V (x)︸ ︷︷ ︸
R→∞−−−→0

∫
|x|>R

|ϕn|2

︸ ︷︷ ︸
n→∞−−−→1

−→ +∞
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as n→∞ and then R→∞.

Thus 〈ϕn, Aϕn〉
n→∞−−−→ 0. But this contradicts 〈ϕn, Aϕn〉

n→∞−−−→ µ∞ <∞.

q.e.d.

Theorem 7.15 (Exponential Decay of Bound States). Consider A = −∆ + V with

V ∈ L2(R3) + Lp(R3) and 2 < p <∞. Assume that V (x)→∞ as |x| → ∞.

If u is an eigenfunction of A with eigenvalue E < 0, then∫
R3

|u(x)|2e2α|x|dx <∞

for all 0 < α <
√
|E|. �

Lemma 7.16 (IMS Localisation). If ϕ : Rd → R is smooth, then as quadratic forms

in L2

ϕ2(−∆) + (−∆)ϕ2

2
= ϕ(−∆)ϕ− |∇ϕ|2.

Consequently, if (ϕi)i with ∑
i∈I

ϕ2
i = 1

then

−∆ =
∑
i∈I

ϕi(−∆)ϕi −
∑
i

|∇ϕi|2,

i.e. ∫
|∇u|2 =

∑
i∈I

∫
|∇(ϕiu)|2 −

∑
i

∫
|∇ϕi|2|u|2

�

Proof. This follows from a simple integration by parts. q.e.d.

Proof of Theorem. Let −∆u+ V u = Eu. Then for a real-valued, smooth ϕ

〈
ϕ2u, (−∆ + V − E)u

〉
= 0

Thus 〈
u,
ϕ2(−∆ + V − E) + (−∆ + V − E)ϕ2

2
u

〉
= 0
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By IMS localisation∫
|∇(ϕu)|2 +

∫
V ϕ2|u|2 − E

∫
ϕ2|u|2 −

∫
|∇ϕ|2|u|2 = 0

Since V (x)→∞ as |x| → ∞, if suppϕ ⊂ {|x| > R} with R large, then∣∣∣∣∫ V ϕ2|u|2
∣∣∣∣ 6 ε

∫
ϕ2|u|2

for ε > 0 small. Thus ∫
|∇(ϕu)|2 > (E − ε)

∫
ϕ2|u|2

To conclude we need to show ϕ appropriately

0 =

∫
|∇(ϕu)|2︸ ︷︷ ︸
>0

+

∫
V ϕ2|u|2︸ ︷︷ ︸

>−ε
∫
ϕ2|u|2

−E
∫
ϕ2|u|2 −

∫
|∇ϕ|2|u|2

thus

(|E| − ε)
∫
ϕ2|u|2 6

∫
|∇ϕ|2|u|2

A good choice of ϕ is suppϕ ⊂ {|x| > R} for R large and |∇ϕ| ∼ ϕ. Thus we can choose

ϕ = ef on |x| > R for some function f such that |∇f | 6 κ and f ∼ κ|x| where κ <
√
|E| − ε

This tells us that ∫
e2fu2 <∞.

q.e.d.

Theorem 7.17 (CLR - Cwikel-Lieb-Rozenblum). If d > 3, V ∈ L d
2 (Rd), then

∣∣{negative eigenvalues of −∆ + V }
∣∣ 6 C

∫
Rd

|V−|
d
2

for a universal constant C that only depends on the dimension, and

V− =

−V, if V 6 0

0, if V > 0

�
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Remark 7.18. 1) Semi-Classical Analysis: We have the approximate principle that

one quantum bound state of −∆+V ! one unit volume in phase space in Rd×Rd

in particular

dim 1(−∆+V )<0 !
∫
Rd

∫
Rd

1{|2πk|2+V (x)<0}dkdx = Ccl

∫
Rd

V
d
2
−

Note that {|2πk|2 + V (x) < 0} is the region in phase space where the particular

has energy less than 0.

2) The assumption d > 3 is crucial! If d = 1, 2 and if V 6 0, V 6≡ 0, then −∆ + V

has at least one negative eigenvalue (exercise!).

�

Proof. Let

W = span{eigenfunctions of −∆ + V with negative eigenvalue} = ran 1{−∆+V <0}.

We have to prove that dimW 6 C
∫
V

d
2
− . Assume that dimW > N , then dim(

√
−∆W ) > N

(why?).

Then there exists an orthonormal family
(√
−∆uj

)
j

in L2(Rd), i.e.
〈√
−∆uj,

√
−∆uk

〉
= δjk

and uj ∈ W .

Then per assumption for all j = 1, . . . , N

〈uj, (−∆ + V )uj〉 6 0

since uj ∈ W . Thus

1 +

∫
V |uj|2 6 0

and therefore taking the sum over j yields

N +

∫
V ρ 6 0
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where

ρ(x) =
N∑
j=1

|uj(x)|2.

It follows that

N 6 −
∫
V ρ 6 V−ρ

On the other hand:

N =
N∑
j=1

〈uj,−∆uj〉 =
N∑
j=1

∫
Rd

|2πk|2
∣∣ûj(k)

∣∣2dk =
N∑
j=1

∫
Rd

∞∫
0

1{|2πk|2>e}
∣∣ûj(k)

∣∣2dedk =

Define uej via its Fourier transform

ûej(k) = 1|2πk|2>eûj(k)

then

N =
N∑
j=1

∫
Rd

∞∫
0

∣∣ûej(k)
∣∣2dedk =

N∑
j=1

∞∫
0

∫
Rd

∣∣ûej(k)
∣∣2dedk =

N∑
j=1

∞∫
0

∫
Rd

∣∣uej(k)
∣∣2dedk =

=
N∑
j=1

∫
Rd

∞∫
0

∣∣uej(k)
∣∣2dedk

where the exchange of integrations is allowed by Tonelli’s theorem as the integrand is always

positive.

By the triangle inequality√√√√ N∑
j=1

|uej(x)|2 >

√√√√ N∑
j=1

|uj(x)|2 −

√√√√ N∑
j=1

|uj(x)− uej(x)|2

and thus ∑
j=1

|uej(x)|2 >

√ρ−
√√√√ N∑

j=1

|uj(x)− uej(x)|2

2

+
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Note that

N∑
j=1

|uj(x)− uej(x)|2 =
N∑
j=1

∣∣∣∣∫ e2πik·xûj − uej(k)dk

∣∣∣∣2 =
N∑
j=1

∣∣∣∣∫ e2πik·x1{|2πk|26e}ûj(k)dk

∣∣∣∣2 =

=
N∑
j=1

∣∣∣∣∫ e2πik·x1{|2πk|26e}
|2πk|

|2πk|ûj(k)dk

∣∣∣∣2 6
6

N∑
j=1

∣∣∣∣∫ e2πik·x1{|2πk|26e}
|2πk|

∣∣∣∣2dk = Kde
d
2
−1.

where the inequality follows from Bessel’s inequality as the |2πk|ûj(k) form an orthonormal

family in L2(Rd).

Thus
N∑
j=1

|uej(x)|2 >
[√

ρ(x)−
√
Kde

d
2
−1

]2

+

and therefore

N >
∫
Rd

∞∫
0

[√
ρ(x)−

√
Kde

d
2
−1

]2

+

dedx = K̃e

∫
Rd

ρ(x)
d
d−2 dx.

To conclude we now use Hölder’s inequality to see that

N 6
∫
V−ρ 6

(∫
V

d
2
−

) 2
d
(∫

ρ
d
d−2

) d−2
d

6

(∫
V

d
2
−

) 2
d
(
N

K̃d

) d−2
d

and therefore

N 6 Cd

∫
V

d
2
−

and thus also dimW 6 Cd
∫
V

d
2
− since either there exists some N ∈ N such that dimW = N

or dimW =∞ and thus the above inequality holds for all N ∈ N and therefore also

Cd

∫
V

d
2
− =∞.

q.e.d.
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Symmetries

Definition 7.19 (Strongly Continuous One-Parameter Unitary Group). A family of

operators
{
U(t)

∣∣ t ∈ R
}

such that for all t1, t2 ∈ R

U(t1)U(t2) = U(t1 + t2)

and for (tn)n ⊂ R, tn
n→∞−−−→ t ∈ R

U(tn)
n→∞−−−→
s

U(t).

�

Theorem 7.20. Let A be a self-adjoint operator and U(t) = exp(−itA). Then

(1) U(t) is a strongly continuous unitary group.

(2) The limit for all ψ ∈ D(A)

lim
t→0

1

t
(U(t)ψ − ψ) = −iAψ.

(3) D(A) is left invariant under U(t), i.e. U(t)D(A) ⊂ D(A).

�

Theorem 7.21 (Stone). Let U(t) be a strongly continuous one-parameter unitary

group. Then there exists the operator A on

D(A) =

{
ψ ∈H

∣∣ lim
t→0

1

t
(U(t)ψ − ψ) exists

}

139
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defined via

Aψ = lim
t→0

i

t
(U(t)ψ − ψ).

is self-adjoint. In particular U(t) = exp(−itA). �

Definition 7.22 (Symmetry Transformation). A map T : H →H , T̂ : L (H ,H )→
L (H ,H ) (a map from a suitable class of linear operators of the Hilbert space to itself)

such that for all ψ ∈H and all suitable operators A ∈ L (H ,H )〈
Tψ, T̂ (A)Tψ

〉
= 〈ψ,Aψ〉

If A =
∑

a |a〉 〈a|, then if a′ = Ta and A′ = T̂A we

A′ =
∑
a

T |a〉T ∗ 〈a| =
∑
a

|a′〉 〈a′|

and the symmetry condition translates to

〈Tψ, a′〉 〈a′, Tψ〉 = | 〈a′, Tψ〉 |2
!
− | 〈a, ψ〉 |

for all ψ ∈H . �

Theorem 7.23 (Wigner). Let T be a bounded linear operator on H such that for all

u, v ∈H

| 〈u′, v′〉 | = | 〈u, v〉 |

then T has the form Tu = ϕ(u)V u where ϕ : H → S1 ⊂ C is some phase factor and

V is either unitary or anti-unitary, i.e.

〈V u, V v〉 = 〈v, u〉 .

�

Proof. Let (ej)j be an orthonormal basis of H , and define e′j = Tej.

For j > 2 define fj = e1 + ej, the per our assumption

|
〈
e′2, f

′
j

〉
| = | 〈e1, fj〉 | = 1, |

〈
e′j, f

′
k

〉
| = | 〈ej, fk〉 | = δjk
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thus f ′j = xje
′
1 + yje

′
j with |xj| = |yj| = 1.

Redefine T̃ such that

f̃ ′j = T̃ fj =
f ′j
xj
, ê′j =

yj
xj
e′j

then f̃ ′j = ẽ′1 + ẽ′j. We shall now drop the tilde and simply consider T̃ as the transition form

T to T̃ is simply a multiplication with a unitary operator.

Now let Tu =
∑

i a
′
ie
′
i. Then

|a′j| = |
〈
e′j, u

′〉 | = | 〈ej, u〉 | = |aj|
and

|a1 + aj| = | 〈e1 + ej, u〉 | = |
〈
e′1 + e′j, u

′〉 | = |a′1 + a′j|

which implies

|a1|2 + 2R a1aj + |aj|2 = |a′1|2 + 2R a′1a
′
j + |a′j|2 ⇐⇒ R a1aj = R a′1a

′
j

If ϑ and ϑ′ are the phases of a1aj and a′1a
′
j respectively, then this implies that cos(ϑ) = cos(ϑ′)

since the norms of a1aj and a′1a
′
j are equal by the above.

Therefore ϑ = ±ϑ′. If ϑ = ϑ′ then we can redefine T such that a′1 = a1 and if ϑ = −ϑ′

such that a′1 = a1. In the first case this means that the symmetry is T is unitary and in the

second anti-unitary. q.e.d.

Remark 7.24. A symmetry continuous connected to the identity must always be uni-

tary by connectedness. �

Definition 7.25. A density matrix ρ is a positive operator on the Hilbert space H of

trace 1. This means that there exists an orthonormal basis (ui)i of H such that

ρ =
∑
i

pi |ui〉 〈ui| ,
∑
i

pi = 1

pi can be interpreted as the probability that a particle described by ρ is in the state

|ui〉.
�
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Remark 7.26. ρ is the most general form of a “state” (as introduced with C∗-algebras)

together with normality. �

Definition 7.27. The (von Neumann) entropy of ρ is defined to be

S(ρ) = −Tr(ρ log(ρ)) = −
∑
i

pi log pi.

�

Remark 7.28. Entropy is a measure for the “fuzzyness” of our knowledge of the state

of a particle described by ρ. If ρ is a pure state, i.e. ρ = |u〉 〈u|, then S(ρ) = 0. �

The time-evolution of ρ is given by

ρ(t) = U(t)ρU(t)†.

7.3 Argument for Unitary Evolution

Suppose that we have some general time evolution v(t), u(t) for some initial states u, v. Then

the density matrix

ρ =
1

2
|u〉 〈u|+ 1

2
|v〉 〈v|

would generically evolve as

ρ(t)
1

2
|u(t)〉 〈u(t)|+ 1

2
|v(t)〉 〈v(t)|

Then for ψ(t) = cuu(t) + cvv(t) the density matrix would be

ρψ =

(
1
2

1
2
〈u(t), v(t)〉

1
2
〈v(t), u(t)〉 1

2

)

Suppose that 〈u, v〉 = 0 but for some t > 0 〈u(t), v(t)〉 6= 0. Then

S(ρ(0)) = log(2), S(ρ(t)) = w+ log(w+) + w− log(w−)
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where w± = 1
2
(1± | 〈u, v〉 |). Then since S(ρ(0)) is maximal entropy would decrease.

This gives one argument for why time evolution must behave as a symmetry and thus be

unitary.

7.4 Trace Out of Density Matrix

Suppose that H = HS ⊗H0 and suppose that only make an observation on HS, i.e. our

observable decomposes as A = AS ⊗ I. Then for a state

ψρ =
∑
i

√
piϕiS ⊗ xi0.

we have

〈ψρ, Aψρ〉 =
∑
ij

√
pipj 〈ϕi, Aϕj〉 〈xi, Ixj〉︸ ︷︷ ︸

=δij

=
∑
i

pi 〈ϕi, Aϕi〉 = Tr(ρA)

where ρ =
∑

i pi |ϕi〉 〈ϕi|.
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Chapter 8

Scattering Theory

Let us start with u(t) = e−itAu0, where A = −∆ + V on L2(Rd). We are interested in the

asymptotic behaviour of u(t) as t→ ±∞.

� If u0 is a bound state, then u(t) remains localised as t→ ±∞.

� If u0 is orthogonal to all bound states, then u(t) escapes to infinity as t→ ±∞.

Theorem 8.1. Let A be a self-adjoint operator on L2(Rd) and u(t) = e−itAu0 with

u0 ∈ span{eigenfunctions of A}.
Then for all ε > 0 there exists a R = Rε such that

inf
t∈R

∫
|x|6R

|u(t, x)|2dx >
∫
Rd

|u0(x)|2dx− ε.

Note that ∫
Rd

|u(t, x)|2dx =

∫
Rd

|u0(x)|2

thus

sup
t∈R

∫
|x|>R

|u(t, x)|2dx 6 ε.

�

Proof. Exercise! q.e.d.

145
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Next we show that if u0 is orthogonal to all eigenfunctions of A, then u(t) = e−itAu0 escapes

to infinity in the sense that for all R > 0

lim
t→±∞

∫
|x|6R

|u(t, x)|2dx = 0

which is a particular case of the so-called RAGE theorem.

Our goal in studying scattering theory is as follows: if A = −∆ + V , V → 0 as |x| → ∞
then for u0 orthogonal to the bounds states there exist some v±0 ∈ L2(Rd) such that

lim
t→±∞

∥∥e−itAu0 − eit∆v±0
∥∥
L2 = 0.

Theorem 8.2 (RAGE for the free Schrödinger Operator). For all f ∈ L2(Rd), then

for all R > 0 ∫
|x|6R

∣∣(eit∆f)(x)
∣∣2dx

t→±∞−−−−→ 0

�

Lemma 8.3. If f ∈ L1(Rd) ∩ L2(Rd), then

(
eit∆f

)
(x) =

1

(4πit)
d
2

∫
Rd

ei
|x−y|2

4t f(y)dy

for a.e. x ∈ Rd. �

Remark 8.4. Recall the heat kernel

(
et∆f

)
(x) =

1

(4πt)
d
2

∫
Rd

e−
|x−y|2

4t f(y)dy

�

Proof. For all ε > 0 and(
̂e(it+ε)∆f

)
(k) = e−(it+ε)|2πk|2 f̂(k) =: Ĝε(k)f̂(k) = Ĝε ∗ f(k)
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where

G(x) =
1

(4π(it+ ε))
d
2

e−
|x|2

4(it+ε)

by the formula for the Fourier transform of a Gaussian. Thus

(
e(it+ε)∆f

)
(x) =

1

(4π(it+ ε))
d
2

∫
Rd

e−
|x−y|2
4(it+ε)f(y)dy

for all ε > 0. The left-hand side converges to eit∆f as ε ↓ 0 since e−(it+ε)x is bounded for all

ε > 0 and converges pointwise and thus e(it+ε)∆ converges strongly by functional calculus.

The right-hand side on the other hand also converges pointwise and is dominated by |f(y)| ∈
L1 and therefore by dominated convergence

(
eit∆f

)
(x) =

1

(4πit)
d
2

∫
Rd

e−
|x−y|2

4it f(y)dy.

q.e.d.

Consequently if f ∈ L1(Rd) ∩ L2(Rd), then

∣∣eit∆f(x)
∣∣ =

∣∣∣∣∣∣ 1

(4πit)
d
2

∫
Rd

ei
|x−y|2

4t f(y)dy

∣∣∣∣∣∣ 6 1

(4π|t|) d2
‖f‖L1

for a.e. x and thus

‖eit∆f‖∞ 6
‖f‖1

(4π|t|) d2
t→±∞−−−−→ 0

and for all R > 0 ∫
‖x‖6R

∣∣eit∆f(x)
∣∣2dx 6

∥∥eit∆f∥∥2

∞|BR(0)| t→±∞−−−−→ 0

Proof of Theorem 8.2. If f ∈ L1 ∩ L2 we are done by the above. Now take any f ∈ L2(Rd).

We claim that for all ε > 0 there exist f1 ∈ L1 ∩ L2 and f2 ∈ L2 such that f = f1 + f2 and

‖f2‖L2 < ε.

Indeed, if we take f1 = f1{|f |>λ} then∫
|f1| =

∫
|f |1{|f |>λ} 6

∫
|f |2

λ
=
‖f‖2

λ
<∞
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and f2 = f1{|f |6λ} where

‖f2‖ =

∫
|f |21{|f |6λ}

λ→0−−→ 0

by dominated convergence. We can also take f1 = f1{|x|6L} which is L1 ∩ L2 as {|x| 6 L}
has finite measure and for a set of finite measure Lp ⊂ Lq for p > q. Then f2 = f1{|x|>L}

which also converges to 0 as L→∞.

Thus∫
|x|6R

∣∣eit∆f(x)
∣∣2dx =

∫
|x|6R

∣∣eit∆f1(x) + eit∆f2(x)
∣∣2dx 6 2

∫
|x|6R

∣∣eit∆f1(x)
∣∣2dx+ 2

∫
|x|6R

∣∣eit∆f2(x)
∣∣2dx 6

6 2

∫
|x|6R

∣∣eit∆f1(x)
∣∣2dx+ 2ε2

and therefore

lim sup
t→±∞

∫
|x|6R

∣∣eit∆f(x)
∣∣2dx 6 2ε2 ε↓0−−→ 0.

q.e.d.

8.1 General RAGE

Let A be a self-adjoint operator on H .

Theorem 8.5. For u0 ∈ D(A) orthogonal to all eigenfunctions of A

eitAu0
t→±∞−−−−⇀
ergodic

0

weakly in H . Equivalently, for all compact operators K, KeitAu0
t→±∞−−−−→
ergodic

0 strongly in

H , i.e.

lim
T→∞

1

T

T∫
0

∥∥KeitAu0

∥∥2

H
= 0.

�

Remark 8.6 (Spectral Decomposition).

H = Hpp ⊕Hac ⊕Hsc
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which is the quantum version of the Lebesgue decomposition of a measure

µ = µpp + µac + µsc

where µ − µpp does not have any support on single points, dµac = gdx for some g ∈
L1(Rd) and µsc is singular to the Lebesgue measure.

Which however, only consider the simpler decomposition

Hp = span{eigenfunctions of A}

point spectrum and Hc = H ⊥
p . �

Theorem 8.7 (Ruelle). Let A be a self-adjoint operator on H . Then for all u0 ∈H

and all K compact operators

1

T

T∫
0

‖Ke−itAu0‖2dt
T→±∞−−−−→ 0

�

Remark 8.8. If K is a compact operator on a Hilbert space, then we can write K as

K =
∞∑
n=1

λn |un〉 〈vn|

where (un)n, (vn)n are orthonormal bases. By definition K is trace-class if

Tr |K| =
∑
n

|λn| <∞.

where |K| =
√
K∗K. In this case

TrK =
∞∑
n=1

〈ϕn, Kϕn〉

for any orthonormal basis (ϕn)n (Exercise!).
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By definition, K is Hilbert-Schmidt if

‖K‖2
HS =

∞∑
n=1

|λn|2 <∞.

In this case

‖K‖2
HS =

∞∑
n=1

‖Kϕn‖2

for any orthonormal basis (ϕn)n.

In fact we have

B(H ) ⊃ compact operators ⊃ Hilbert-Schmidt operators σ2 ⊃ Trace-Class operators σ1

or equivalently

‖K‖ 6 ‖K‖HS 6 Tr |K| = Tr
√
K∗K

If K is compact and K =
∑
λn |un〉 〈vn| then

‖K‖ = sup
n
|λn|, ‖K‖HS =

√∑
|λn|2, Tr |K| =

∑
|λn|

In particular, if K is Hilbert-Schmidt then K∗K is trace class. In fact, σ2 is a Hilbert

space with inner product

〈K1, K2〉HS = Tr(K∗1K2)

if K1, K2 are Hilbert-Schmidt.

In fact one can relate that any Hilbert-Schmidt operator K to an L2 integral kernel.

Recall that the kernel K(x, y) of an operator K on L2(Ω) is defined via

(Kf)(x) =

∫
Ω

K(x, y)f(y)dy

for all f ∈ L2(Ω) and a.e. x ∈ Ω.

Then an operator K is Hilbert-Schmidt on L2(Ω) iff K(x, y) ∈ L2(Ω×Ω) and ‖K‖HS =

‖K(·, ·)‖L2(Ω×Ω).

This proven by using K =
∑

n λn |un〉 〈vn| and accordingly defining

K(x, y) =
∑
n

λnun(x)vn(y).
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�

Proof.

Step 1 Consider the sequence of operators

MT =
1

T

T∫
0

|e−itAu0〉 〈e−itAu0| dt

Then MT > 0 and

TrMT =
1

T

T∫
0

Tr
(
|e−itAu0〉 〈e−itAu0|

)
dt =

1

T

T∫
0

1dt = 1

Thus (MT )T is a bounded set of trace-class operators. Thus (MT )T is bounded in the

Hilbert-Schmidt norm, and σ2 is a Hilbert space. By the Banach-Alaoglu Theorem 1.20,

there exists a sequence Tn
n→∞−−−→ and M∞ ∈ σ2 such that

MTn
n→∞−−−⇀M∞

weakly in the Hilbert-Schmidt space, i.e. for all Hilbert-Schmidt operators D

lim
n→∞

Tr[MTnD] = Tr[M∞D]

Step 2 We prove that M∞ = 0. We first show that

e−itAM∞e
itA = M∞
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for all t ∈ R. We have for all T ∈ [0,∞)

e−itAMT e
itA = e−itA

 1

T

T∫
0

|e−isAu0〉 〈e−isAu0| ds

eitA =

=
1

T

T∫
0

|e−i(t+s)Au0〉 〈e−i(t+s)Au0| ds =

=
1

T

T+t∫
t

|e−isAu0〉 〈e−isAu0| ds =

=
1

T

 T∫
0

−
t∫

0

+

T+t∫
T

 |e−isAu0〉 〈e−i(s)Au0| ds =

= MT +
1

T

− t∫
0

+

T+t∫
T

 |e−isAu0〉 〈e−isAu0| ds =

However,

Tr
∣∣e−itAMT e

itA −MT

∣∣ 6 1

T

 t∫
0

+

T+t∫
T

Tr |e−isAu0〉 〈e−isAu0|︸ ︷︷ ︸
=1

ds =
1

T
2t

T→∞−−−→ 0

On the other hand, MT ⇀M∞, thus e−itAMT e
itA −MT ⇀ e−itAM∞e

itA −M∞ weakly

in the Hilbert-Schmidt space. Thus e−itAM∞e
itAM∞.

Taking the t-derivative we find

0 =
d

dt

(
e−itAM∞e

itA
)

= −ie−itA(AM∞ −M∞A)eitA

hence AM∞ = M∞A, i.e. M∞ commutes with A.

Because MT , and MT ⇀M∞ weakly in Hilbert-Schmidt space it follows that M∞ > 0,

and that M∞ is Hilbert-Schmidt operator.

Thus we can write M∞ =
∑

n λn |un〉 〈un|. In particular if λ is an eigenvalue of M∞

and λ 6= 0, then the eigenspace Wλ of λ has finite dimension.

Since A commutes with M∞ it follows that A : Wλ → Wλ and A is a self-adjoint

operator on Wλ there exists an orthonormal basis of eigenfunctions of A in Wλ.

In summary there exists an orthonormal basis (ϕn)n of H such that ϕn are both
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eigenfunctions of M∞ and A and

M∞ =
∞∑
n=1

λn |ϕn〉 〈ϕn|

To conclude that M∞ = 0, we need to use u0 ∈ Hc, i.e. u0 is orthogonal to all eigen-

functions of A. From weak-convergence MT ⇀ M∞ in the Hilbert-Schmidt topology

we know that

λn = 〈ϕn,M∞ϕn〉 = lim
T→∞

〈ϕn,MTϕn〉 = lim
T→∞

〈
ϕn,

1

T

T∫
0

|e−itA〉 〈e−itA| dtϕn

〉
=

= lim
T→∞

1

T

T∫
0

∣∣〈ϕn, e−itAϕn〉∣∣2dt = 0

Here 〈
ϕn, e

−itAu0

〉
=
〈
eitAϕn, u0

〉
=
〈
eitξnϕn, u0

〉
= 0

where Aϕn = ξnϕn.

Thus M∞ = 0, i.e.

1

T

T∫
0

|e−itAu0〉 〈e−itAu0| dt
T→∞−−−⇀ 0

in the Hilbert-Schmidt topology. Strictly speaking, we have only proven this for some

sequence Tn
n→∞−−−→ 0. However, since the limit is independent of the sequence the

convergence T →∞ follows.

Step 3 Now take K to be any compact operator, then

1

T

T∫
0

‖Ke−itAu0‖2dt = Tr[MTK
∗K]

since

‖Ke−itAu0‖2 = Tr
[
K |e−itAu0〉 〈e−itAu0|K∗

]
= Tr

[
|e−itAu0〉 〈e−itAu0|K∗K

]
.
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By the spectral theorem K∗K > 0 and compact, and thus we can write

K∗K =
∞∑
n=1

`n |vn〉 〈vn|

with `n
n→∞−−−→ 0.

Now

Tr[MTK
∗K] =

∞∑
n=1

`n 〈vn,MTvn〉 =
∑
`n6ε

`n 〈vn,MTvn〉+
∑
`n>ε

`n 〈vn,MTvn〉 6

6 ε
∞∑
n=1

〈vn,MTvn〉︸ ︷︷ ︸
=TrMT=‖u0‖2

+
∑
`n>ε

`n 〈vn,MTvn〉︸ ︷︷ ︸
finite sum

Thus for all ε > 0

lim sup
T→∞

Tr[MTK
∗K] 6 ε‖u0‖2 + 0,

therefore

Tr[MTK
∗K]

T→∞−−−→ 0

q.e.d.

Corollary 8.9. Let A be self-adjoint and K relatively A-compact and bounded, then

1

T

T∫
0

∥∥Ke−itAu0

∥∥2
dt

T→∞−−−→ 0

for u0 ∈Hc and u0 ∈ D(A). 0 �

Proof. If u0 ∈Hc and u0 ∈ D(A), then

1

T

T∫
0

∥∥Ke−itAu0

∥∥2
dt =

1

T

T∫
0

∥∥K(A+ i)−1︸ ︷︷ ︸
compact

e−itA(A+ i)u0

∥∥2
dt

T→∞−−−→ 0

where we use that A : Hc ∩D(A)→Hc hence (A+ i)u0 ∈Hc and Ruelle’s theorem.
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If u0 ∈Hc and u0 ∈ D(A) then by Jensen’s inequality

1

T

T∫
0

‖Ke−itAu0‖dt 6

√√√√√ 1

T

T∫
0

‖Ke−itAu0‖2dt
T→∞−−−→ 0

If u0 ∈Hc (not necessarily in D(A)), then there exists a sequence (un)n ⊂Hc ∩D(A) such

that un
n→∞−−−→ u0 in H .

Then

1

T

T∫
0

‖Ke−itAu0‖dt 6
1

T

T∫
0

‖Ke−itAun‖dt+
1

T

T∫
0

‖Ke−itA(un − u0)‖dt

The first term converges to 0 as T →∞ by the above and the second term can be estimated

by

1

T

T∫
0

‖Ke−itA(un − u0)‖dt 6 ‖K‖‖un − u0‖
1

T

T∫
0

dt = ‖K‖‖un − u0‖

and thus be made arbitrarily small by taking n→∞. Now noting that

‖Ke−itAu0‖2 6 ‖Ke−itAu0‖‖K‖‖u0‖

the convergence of the square follows as well. q.e.d.

Theorem 8.10 (RAGE). Let A be self-adjoint (Kn)n a sequence of A-relatively compact

bounder operator such that Kn
n→∞−−−→ 1 strongly, i.e. for all u ∈H .

‖Knu− u‖
n→0−−→ 0

Then

Hp =

{
u0 ∈H

∣∣∣∣ lim
n→∞

sup
t∈R

∥∥(1−Kn)e−itAu0

∥∥ = 0

}

Hc =

u0 ∈H

∣∣∣∣∣∣∀n ∈ N : lim
T→∞

1

T

T∫
0

∥∥Kne
−itAu0

∥∥ = 0


�
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Proof. If u0 ∈Hc, then

lim
T→∞

1

T

T∫
0

∥∥Kne
−itAu0

∥∥ = 0

by the corollary and by the assumption Knu
n→∞−−−→ u strongly for all u ∈H , i.e. ‖Kn‖ 6 C

for all n ∈ N by the uniform boundedness principle.

If u0 ∈Hp

(1−Kn)e−itAu0
t→±∞−−−−→ 0

strongly (Exercise!). Combining H = H ⊕Hp implies the conclusion. q.e.d.

Theorem 8.11. Assume that A = −∆ + V is a self-adjoint operator on L2(Rd), as V

is (−∆)-compact. Then

Hc =

u ∈ L2(Rd)

∣∣∣∣∣∣∣ ∀R+ :
1

T

T∫
0

∫
|x|6R

∣∣(e−itAu)(x)
∣∣dxdt

T→∞−−−→ 0


Hp =

u ∈ L2(Rd)

∣∣∣∣∣∣∣ lim
R→∞

inf
t∈R

∫
|x|6R

∣∣(e−itAu)(x)
∣∣dx = ‖u‖2

L2


�

Proof. The first part follows from Exercise 11.4.

The second part uses that 1{|x|6R} is relatively compact w.r.t. A which is equivalent to

1{|x|6R}(A + i)−1 being compact which follows from 1{|x|6R}(−∆ + i)−1(−∆ + i)(A + i)−1

being the product of a compact and a bounded operator. q.e.d.

Remark 8.12. If we know that u ∈ Hc(A), then
∫
|x|6R

∣∣(e−itAu)(x)
∣∣2 → 0 in the time

average. Can we prove that pointwise convergence, i.e.

lim
t→±∞

∫
|x|6R

∣∣(e−itAu)(x)
∣∣2 −→ 0
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This can proven for A = −∆ using

∥∥eit(−∆)u
∥∥
L∞
6 C
‖u‖L1

t3/2

To prove this for a general potential we hope that we can approximate e−itAu via free

dynamics eit∆v. �

8.2 Wave Operator

Let A = −∆ +V , A0 = −∆ on L2(R). We aim at finding u0 ∈ D(A) for each v0 ∈ D(A− 0)

such that

lim
t→∞
‖e−itAu0 − e−itA0v0‖L2 = 0 ⇐⇒ u0 = lim

t→±∞
eitAe−itA0v0

Definition 8.13 (Wave Operator). If it exists we define the wave operator to be

Ω± := s-lim
t→±∞

e−itAeitA0

If the wave operator exists, then it is a unitary operator L2(R3) → ran Ω±. In fact

ran Ω± ⊂Hc. �

Definition 8.14. We say that A is asymptotically complete iff ran Ω+ = ran Ω− = Hc

which is equivalent to the existence of

s-lim
t→±∞

eitA0e−itA

�

Remark 8.15. When does Ω± exist? The main in the following shall be that if

V (x)
|x|→∞−−−−→ 0 “fast enough”, i.e. if it is a so-called short range potential, then the

wave operators exist. �

Theorem 8.16. If V ∈ L2(R3) + Lp(R3), for 2 6 p < 3, then Ω± exist. �
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Remark 8.17. If |V (x)| 6 1
|x|1+ε , for ε > 0 and |x| large, then V 1|x|>R ∈ L3−δ(R3),

where δ = δε > 0. Then the wave operators exist.

But if |V (x)| > 1
|x| for |x| large, then the wave operators do not exist. We need to

modify the approximation limt→±∞ e
−itAeitS where S 6= −∆. �

Theorem 8.18 (Cook’s Method). If A and B are two self-adjoint operators on H

with the same domain and if for ϕ ∈H

∞∫
T

∥∥(A−B)eitBϕ
∥∥dt <∞

for some T >∞, then

Ω+ϕ := lim
t→+∞

e−itAeitBϕ

exists (as a limit in the norm topology.) �

Proof. We need to check that t 7→ e−itAeitBϕ is a Cauchy sequence/net then existence follows

from the completeness of H . This is equivalent to

∥∥e−itAeitBϕ− e−isAeisBϕ∥∥ t,s→+∞−−−−−→ 0.

In order to estimate this norm let us take the derivative

d

dt

(
e−itAeitBϕ

)
= eitA(−iA+ iB)eitB

where we used that [f(C), C] = 0 for any self-adjoint operator C and bounded function f .
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Then

∥∥e−it2Aeit2Bϕ− e−it1Aeit1Bϕ∥∥ =

∥∥∥∥∥∥
t2∫
t1

(−i)e−itA(A−B)eitBϕdt

∥∥∥∥∥∥ 6
6

t2∫
t1

∥∥e−itA(A−B)eitBϕ
∥∥dt =

=

t2∫
t1

∥∥(A−B)eitBϕ
∥∥dt =

=

t2∫
T

∥∥(A−B)eitBϕ
∥∥dt−

t1∫
T

∥∥(A−B)eitBϕ
∥∥dt

t1,t2→∞−−−−−→ 0

since
+∞∫
T

∥∥(A−B)eitBϕ
∥∥dt <∞

q.e.d.

Proof of Theorem 8.16. From Cook’s theorem, we need to check that

∞∫
T

∥∥V eit(−∆)ϕ
∥∥ <∞

if ϕ is “nice enough”, i.e. ϕ ∈ L1(R3) ∩ L2(R3). We shall argue later that this is indeed

enough.

Assume that V ∈ L2(R3). Then

∥∥V eit(−∆)ϕ
∥∥
L2 6 ‖V ‖L2

∥∥eit(−∆)ϕ
∥∥
L∞
6 C‖V ‖L2

‖ϕ‖L1

t3/2

hence
∞∫
T

∥∥V eit(−∆)ϕ
∥∥ 6 C

‖V ‖L2‖ϕ‖L1√
T

<∞

Assume that V ∈ Lp(R3) with 2 6 p < 3. Then by Hölder’s inequality

∥∥V eit(−∆)ϕ
∥∥
L2 6 ‖V ‖Lp

∥∥eit(−∆)ϕ
∥∥
Lq
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with 1
p

+ 1
q

= 1
2
. Here

∥∥eit(−∆)ϕ
∥∥
Lq

can be controlled by
∥∥eit(−∆)ϕ

∥∥
L∞

and
∥∥eit(−∆)ϕ

∥∥
L2 =

‖ϕ‖L2 for q ∈ [2,∞] by interpolation (Exercise 13.5)

Thus we have already proven that if V ∈ L2 + Lp for 2 6 p < 3, then

Ω+ϕ := lim
t→∞

e−it(−∆+V )eit(−∆)ϕ

exists strongly in L2 for all ϕ ∈ L1 ∩ L2.

First note that Ω+ is an isometric operator on its domain which is dense hence it can be

uniquely extend to all of L2. More precisely let ϕ ∈ L2 and (ϕn)n ⊂ L1 ∩ L2 converging to

ϕ. Define Mt := e−itAeit(−∆) then

‖Mt2ϕ−Mt1ϕ‖ 6 ‖Mt2ϕn −Mt1ϕn‖+ ‖Mt2(ϕ− ϕn)−Mt1(ϕ− ϕn)‖ 6

6 ‖Mt2ϕn −Mt1ϕn‖+ (‖Mt2‖+ ‖Mt1‖)︸ ︷︷ ︸
=2

‖ϕ− ϕn‖ =

= ‖Mt2ϕn −Mt1ϕn‖+ 2‖ϕ− ϕn‖
t1,t2→+∞−−−−−−→ 2‖ϕ− ϕn‖

n→∞−−−→ 0

q.e.d.

Remark 8.19 (Completeness). If V is nice enough, then

Ω+ := s-lim
t→∞

e−it(−∆)V eit(−∆)

is well-defined on L2(R3). However, by the RAGE theorem we only know that ran(Ω+) ⊂
Hc(−∆ + V ). When does ran(Ω+) = Hc(−∆ + V ) hold.

If this is correct, then we say that Ω+ is complete. As a consequence, we can approx-

imate every u ∈Hc(−∆ + V )

∥∥eit(−∆+V )u− eit(−∆)ϕ
∥∥
L2

t→+∞−−−−→ 0

as a consequence ∫
|x|6R

∣∣(eit(−∆+V )u
)
(x)
∣∣dx t→+∞−−−−→ 0

�
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Remark 8.20. Kato prove that Ω+ is complete iff

(Ω+)−1u := lim
t→∞

eit(−∆)e−itAu

exists for all u ∈Hc(A). �

Theorem 8.21. If V is short-range V ∈ L1 ∩ L∞ and ‖V ‖1 + ‖V ‖∞ is small enough,

then ∥∥V eit(−∆+V )ϕ
∥∥
L2 6

C

1 + t3/2

for all t ∈ R where ϕ ∈ L1 ∩ L∞. C is independent of t but depends on ϕ.

Consequently
∞∫

−∞

∥∥V eit(−∆+V )ϕ
∥∥
L2dt <∞

and hence

(Ω+)−1 := s-lim
t→∞

e−it(−∆)eit(−∆+V )

exists by Cook’s method. This in turn then implies completeness. �

Proof. If |t| 6 1 then we have

∥∥V eit(−∆+V )ϕ
∥∥
L2 6 ‖V ‖L∞

∥∥eit(−∆+V )ϕ
∥∥
L2 6 ‖V ‖L∞‖ϕ‖L2 6

C

2

Thus it suffices to consider |t| > 1 which we shall consider now.

We shall use Duhamel’s formula: For A = −∆ + V , A0 = −∆

e−itAϕ = e−itA0ϕ+ (−i)
t∫

0

e−i(t−s)A0V e−isAϕds.

Indeed

eitA0e−itAϕ = e−itA0ϕ+ (−i)
t∫

0

eisA0V e−isAϕds

because
d

dt

(
eitA0e−itAϕ

)
= eitA0i(A0 − A)e−itAϕ = −ieitA0V e−itAϕ.



162 CHAPTER 8. SCATTERING THEORY

Consider

∥∥V e−itAϕ∥∥
L2 6

∥∥∥∥∥∥V e−itA0ϕ+ (−i)
t∫

0

V e−i(t−s)A0V e−isAϕds

∥∥∥∥∥∥
L2

6

6
∥∥V e−itA0ϕ

∥∥
L2 +

t∫
0

∥∥V e−i(t−s)A0V e−isAϕ
∥∥
L2ds

We know that ∥∥V e−itA0ϕ
∥∥
L2 6 ‖V ‖L2

∥∥e−itA0ϕ
∥∥
L∞
6

C

|t|3/2

and

∥∥V e−i(t−s)A0V e−isAϕ
∥∥
L2 6 ‖V ‖L2

∥∥e−i(t−s)A0V e−isAϕ
∥∥
L∞
6

6
‖V ‖L2

|t− s|3/2
∥∥V e−isAϕ∥∥

L1

However, the integral over s diverges thus it is only useful for |s− t| not too small. On the

other hand

∥∥V e−i(t−s)A0V e−isAϕ
∥∥
L2 6 ‖V ‖L∞

∥∥e−i(t−s)A0V e−isAϕ
∥∥
L2 =

= ‖V ‖L∞
∥∥V e−isAϕ∥∥

L2 6 ‖V ‖
2
L∞

∥∥e−isAϕ∥∥
L2 = ‖V ‖2

L∞‖ϕ‖L2

Define

ft :=
(∥∥V e−itAϕ∥∥

L1 +
∥∥V e−itAϕ∥∥

L2

)
Mt := sup

s∈[0,t]

f(t)

By Duhamel’s formula we again have

∥∥V e−itAϕ∥∥
L1 6

∥∥V e−itA0ϕ
∥∥
L1 +

t∫
0

∥∥V e−i(t−s)A0V e−isAϕ
∥∥
L1ds
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The two terms can be estimated via

∥∥V e−itA0ϕ
∥∥
L1 6 ‖V ‖L1

∥∥e−itA0ϕ
∥∥
L∞
6 C
‖V ‖L1‖ϕ‖L1

t3/2∥∥V e−i(t−s)A0V e−isAϕ
∥∥
L1 6 ‖V ‖L1

∥∥e−i(t−s)A0V e−isAϕ
∥∥
L∞
6 ‖V ‖L1

∥∥V e−isAϕ∥∥
L1

|t− s|3/2∥∥V e−i(t−s)A0V e−isAϕ
∥∥
L1 6 ‖V ‖L2

∥∥e−i(t−s)A0V e−isAϕ
∥∥
L2 = ‖V ‖L2

∥∥V e−isAϕ∥∥
L2

In summary

ft 6
C

t3/2
+

t∫
0

(∥∥V e−it(t−s)A0V e−isAϕ
∥∥
L2 +

∥∥V e−it(t−s)A0V e−isAϕ
∥∥
L1

)
ds 6

6
C

t3/2
+

t∫
0

min

{
fs

|t− s|3/2
, fs

}
ds

Thus

Mt 6
C

t
3
2

+Mt

∫ t

0

min

{
1

|t− s|3/2
, 1

}
ds︸ ︷︷ ︸

=:D<∞

(‖V ‖L∞ + ‖V ‖L1) =
C

t
3
2

+MtD(‖V ‖L∞ + ‖V ‖L1)

If D(‖V ‖L∞ + ‖V ‖L1) < 1 then Mt 6 C′

t3/2
, thus for all t ∈ R

‖V e−itAϕ‖L2 + ‖V e−itAϕ‖L1 6
C

1 + |t| 32

which ends the proof by Cook’s theorem.

q.e.d.

Remark 8.22. In this case, i.e. (‖V ‖L1 + ‖V ‖∞) being small, then for all u ∈ L2(R3)

∥∥e−it(−∆+V )u− e−it(−∆)ϕ
∥∥
L2

t→∞−−−→∞

for some ϕ ∈ L2. Thus u ∈ Hc(−∆ + V ). Consequently Hp(−∆ + V ) = {0}, i.e.

−∆ + V has no eigenvalue. �
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Remark 8.23. Assume that the wave operators Ω± = s-limt→∞ e
−itAeitA0 exist, A0 =

−∆ on L2(Rd). Then AΩ± = Ω±A0 which is equivalent to A0 = Ω−1
± AΩ±. Ω± :

L2(Rd)→ ran Ω± is unitary.

Take Ω±(x, y) to be the kernel of Ω±. Then for all f

(AΩ±f)(x) = (Ω±A0f)(x)

=⇒
∫
AxΩ±(x, y)f(y)dy =

∫
Ω±(x, y)−∆f(y)dy

=⇒
∫
AxΩ̂±(x, y)f̂(y)dy =

∫
Ω±(x, k)|2πk|2f̂(k)dk

=⇒ AxΩ̂±(x, k)f̂(y)dy = |2πk|2Ω±(x, k)

for all x, k. Here Ω̂±(x, k) is the Fourier transform of y 7→ Ω±(x, y).

Thus for all k ∈ Rd, x 7→ Ω̂±(x, k) is “like” an eigenfunction of A w.r.t. to the eigenvalue

|2πk|2. Here it might happen that x 7→ Ω±(x, k) /∈ L2(Rd). �

Example 8.24. If d = 1 and A = −∆ + V (x) where

V (x) =

V0 if x > 0

0 if x < 0

then for all k

Ω±(x, k) =

Ae2πikx +Be−2πikx, if x > 0

Ce2πikx +De−2πikx, if x < 0

Remark 8.25 (Existence of Wave Operators). By Cook’s method Ω± exist if

∞∫
T0

‖(A− A0)eitA0ϕ‖L2 <∞

for ϕ in a dense set. Above we applied this to A0 = −∆ and A = −∆ +V . We can also

apply this to A0 = −∆ and A = −∆ + |v〉 〈v| or A = −∆ +B where B is trace class.

One can also apply Kato’s method: If A−A0 is trace class, Ω± = s-limt→±∞ e
−itAeitA0

exists. There are many extensions, e.g. assuming that (A + i)−1 − (A0 + i)−1 is trace
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class. �
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Scattering

A scattering experiment is characterised by a set of ingoing particles with momenta and

spins

{k1, s1, . . . ,kI , sI}

and and a set of outgoing particles

{q1, σ1, . . . , qJ ,σJ}

and the so-called scattering cross-section

σ(k1, s1, . . . ,kI , sI , q1, σ1, . . . , qJ , σJ) =
Ne

Fi

where Ne is number of outgoing particles of a certain type and Fi is the ingoing flux, i.e. the

number of particles coming in per unit time per unit area.

Lippmann-Schwinger Equation

We are looking for a scattering solution ψ±k . The ± denotes the in/outgoing boundary

condition and k the asymptotic momentum at large distances.

ψ±k = lim
ε↓0

ϕ− 1

H0 −
(
k2

2
± iε

)(V ψ±k )
This will deliver solution such that

Hψ±k =
k2

2
ψ±k

where H = H0 + V and

H0ϕ =
k2

2
ϕ.

167
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In position space with H0 = −1
2
∆

ψ±k (r) = eik·r − 1

4π

∫
e∓i|k||r−r

′|

|r − r′|
V (r′)ψ±k (r′)dr′

Modelling a (Simple) Scattering Experiment

We prepare a particle in a “free” state, wave packet

ϕ(r,−t) =
1

(2π)3/2

∫
eik·rψ(k)dk

such that ϕ(r,−t) is outside the range of the potential.

Let ϕ(r,−t) evolve by e−iHt (not H0) to large times T and analyse ϕ(r, T ) in terms of free

wave packets.

(1) What does “prepare the wave packet” mean? Can we map any wave-packet of free

mater (H0), onto a scattering state of the free problem (H)? Is that mapping unique?

(Existence and Uniqueness of Scattering Theory)

(2) What is the fate of the scattering state? Can the incoming packet en up as a bound

state of H. (Asymptotic Completeness of Scattering Theory)

Point, Absolutely Continuous and Singular Spectrum

A Hilbert space is divided by a self-adjoint operator on it into the following spectral sub-

spaces:

Hp = span(eigenvectors)

the subspace of the pure-point spectrum,

Hc = H ⊥
p

the essential (continuous) subspace. One can further distinguish Hc

Hc = Hac ⊕Hs

where measure µu associated with u ∈ Hac is absolutely continuous w.r.t. the Lebesgue

measure (i.e. there exists a measurable function f such that µ = fλ, where λ is the Lebesgue
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measure). The measure associated to the vectors in the complementary space is singular to

λ but continuous (i.e. does not contain delta functions).

ψ ∈Hac behave like wave packets, i.e.

lim
t→±∞

〈
e−itHψ

∣∣ψ〉 = 0

For ψ ∈Hs only the corresponding time average decays.

A scattering experiment is composed of two dynamics: the free evolution H0 and the inter-

acting evolution H.

Theorem 8.26. Let A be a self-adjoint operator and K relatively A-compact and denote

by P (c)H = Hc and P (ac)H = Hac the projection into the continuous and absolutely

continuous subspaces respectively, ten

lim
T→∞

1

T

T∫
0

∥∥Ke−itAP (c)ψ
∥∥2

dt = 0

lim
T→∞

∥∥Ke−itAP (ac)ψ
∥∥2

= 0

�

Remark 8.27 (Implications for Schrödinger Operators). Let χR be the characteristic

function of a sphere of radius R. Then χR is (−∆)-relatively compact.

In particular for any function ψ ∈H = H (ac),−∆

lim
t→∞
‖χReit∆ψ‖ = 0

�

Theorem 8.28 (RAGE (Ruelle, Amrein, Georgescu, Enß) Theorem). Let A be a self-

adjoint operator. Suppose there is a sequence of A-relatively compact operators (Kn)n
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which converges strongly to the identity. Then

Hc =

ψ ∈H

∣∣∣∣∣∣ lim
n→∞

lim
T→∞

1

T

T∫
0

‖Kne
−itAψ‖dt = 0


Hp =

{
ψ ∈H

∣∣∣∣ lim
n→∞

sup
t>0
‖(1−Kn)e−itAψ‖ = 0

}
�

Scattering Operators Ω± (Møller)

Let U0(t) = e−itH0 and U(t) = e−itH . Then the scattering operators are defined on H ac(H0)

via

Ω± := s-lim
t→±∞

U(t)U0(−t)

when they exist.

Definition 8.29 (Asymptotic Completeness). If Ω± are bijections H ac(H)↔H ac(H0)

the scattering problem is said to be asymptotically complete. �

Ω± exist and are complete for “short range potentials”

A potential V is called short ranged if

∞∫
0

∥∥V (−∆ + 1)−11BCr
∥∥dr <∞

and V (−∆ + 1)−1 is relatively bounded. Here Br denotes the ball of radius r.

For all ε > 0 the potentials 1
r1+ε are short range, but the Coulomb potential is not.

Stationary Scattering Theory

lim
ε↓0

ε

∞∫
0

e−εtf(t)dt = lim
t→∞

f(t).
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Representing H0 via its porjection valued measures

H0 =

∞∫
0

dP (E)

Then

eitHe−itH0 = eitH
∞∫

0

e−itEdP (E)eitH =

∞∫
0

eit(H−E)dP (E)

Then

Ω± = lim
ε↓0

ε

∞∫
0

e−εt
∞∫

0

e±it(H−E)dP (E)dt = 1− lim
ε↓0

∞∫
0

(H − E ± iε)−1V dP (E)

which yields the Lippmann-Schwinger equation.

Asymptotic Completeness

A potential is called asymptotically complete if

Ω±Pac(H0)H = Pac(H)H .

This is the case when the potential is short-range, i.e.

∞∫
0

‖V (−∆ + 1)−11BCr ‖dr <∞

or when Cook’s criterion holds

∞∫
t0

‖V e±itH0ϕ‖dt <∞

Consider the self-adjoint dilation operator

D =
1

2
(x · p+ p · x)
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which generates the dilations

Uλψ(x) =
(
eλ
) 3

2ψ(eλx) = eiλDψ(x)

Define the projectors onto the in- and out-going subspaces via

P± := PD(0,±∞).

We also have Perry’s estimate for any n ∈ N∥∥∥1B2v|t|e
−itH0f(h0)PD((±R,±∞))

∥∥∥ 6 C

1 + |t|n
f

where f is differentiable function with support in [v2
0, v

2
1] where v < v0.

Functions of the type

ψ = f(H0)PD((±R,±∞))ϕ

are dense in H .

By Cook’s criterion Ω± exists and thus Ω±PacH ⊂ PacH . The short range property enters

as (Ω± − 1)f(H0)P± being compact.

Final steps of the proof: Take ψ(t) = e−itHψ from PacH . We need to show that ψ ∈ ran Ω±.

At large t > 0 ψ(t) can be meaningfully decomposed into ϕ−(t) +ϕ+(t) where ϕ±(t) ∈ PD,±.

In this step short range-ness is essential, i.e.e f(H0)− f(H) is compact.

Next we see that

‖ψ‖2 = · · · = lim
t→±∞

〈ψ(t),Ω+ϕ+(t) + Ω−ϕ−(t)〉

Assume there exists ψ⊥ which is orthogonal to ran Ω+.

Teschl 12.43

lim
t→+∞

〈
P∓f(H0)∗e−itH0Ω∗∓ψ(t), ψ(t)

〉
= 0

Intertwining property: (bijective map between the dynamics of H0 and the scattering dy-

namics of H)

Ω±f(H0) = f(H)Ω±

at large t: ϕ+(t) is completely in PacH . At all times scattering wave packets are in Pac(H ).
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Coulomb Scattering

Wave operators for H0 = −∆, H = −∆∓ 1
r

do not exists. Why? The classical trajectory of

a particle moving classically, radially away then

r(t) = ct+ d log(t) +O(1)

never ∼ ct.

There are three ways out:

(1) Exact solutions and eigenfunctions are known for H = −∆± 1
r
; hypergeometric func-

tions

(1b) Cross-section formulae are known but they only contain information concerning the

asymptotic momenta p± (Rutherford formula).

(2) The Dollard Hamiltonian

HD(t) = −∆− 1

2|t|
√
−∆

ϑ(−4|t|∆− 1)

Then

ΩD
± = s-lim

t→±∞
eit(−∆− 1

r
)e
−i

t∫
0

HD(s)ds

exists.

S-Matrix

We are interested in the transition probabilities

∣∣ 〈Ω+ϕi,Ω−ϕe〉
∣∣2

or in other words

S := Ω†−Ω+

This is a unitary operator

S : PacH −→ PacH
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S inherits all symmetries of H and H0. In particular

[H0, S] = 0

via the intertwining property. This means that “free” energy is conserved by S.

S = lim
ε↓0

∫ (
1− 2πiδ(H0 − E)

(
V − V (H − E + iε)−1V

)
δ(H0 − E)

)
dE

Abel limit.

For a rotationally symmetric potential the S matrix must commute with the angular mo-

mentum operators, i.e.

S |E, `,m〉 = eiδ`(k) |E, `,m〉

here k2 = 2E. δ`(k) is called the scattering phase.

Note that the 1 in the S-matrix formula above induces a singularity for transitions of the

type 〈ϕ, Sϕ〉.
Thus we restrict our attention to the so-called T -matrix.

T (z) = V − V (H − z)−1V.

We define the “on-shell” matrix element

t(k,k′) = lim
ε↓0

〈
k
∣∣V − V (H − E − iε)−1V

∣∣k〉
where

|k〉 = (2π)−
3
2 eik·x, 〈k,k′〉 = δ(k − k′)

Note that

〈k |V Ω− |k′〉 =
〈
k
∣∣Ω∗+V ∣∣k′〉

Now defining for two unit vectors n,n′ ∈ R3.

f(k,n,n′) := −(2π)2t(kn, tn′)

then

σ(kn, kn′) = |f(k,n,n′)|2



Chapter 9

Many-Body Quantum Theory

Our Hilbert space in the following shall be H = L2
(

(R3)
N
)

= L2(R3N) =
⊗N L2(R3).

Remark 9.1. In general we have for finite dimensional vector space H1, H2

L2(H1 ⊕H2) ' L2(H1)⊗ L2(H2)

given by

ui ⊗ vj 7−→ ui ⊗ vj

where (ui)i is a basis for L2(H1) and (vj)j is one for L2(H2) and

(u⊗ v)(x, y) = u(x)v(y)

Note that L2(H1) × L2(H2) → L2(H1 ⊕H2), (u, v) 7→ u ⊗ v is bilinear and thus has a

unique lifting to L2(H1)⊗ L2(H2). �

The typical many-body Hamiltonian for N -particles is

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

16i<j6N

W (xi − xj)

where xi ∈ R3 is interpreted as the position ith particle.

Example 9.2. A molecule with M nuclei at (Rj)
N
j=1 with charges Zj > 0 then the

175



176 CHAPTER 9. MANY-BODY QUANTUM THEORY

Hamiltonian of N -electrons is

HN =
N∑
i=1

j

(
−∆xi −

M∑
j=1

Zj
xi −Rj

)
+

∑
16i<j6N

1

|xi − xj|
+

∑
16j<k<6M

ZjZk
|Rj −Rk|︸ ︷︷ ︸

constant

.

Remark 9.3 (Fundamental Questions). 1) When is HN self-adjoint?

2) What does σ(HN) look like?

3) Dynamics (existence of wave operator, asymptotic completeness)

�

Remark 9.4. In one-body theory, −∆+V (x), if V (x)
|x|→∞−−−−→ 0 “fast”, then V is (−∆)-

compact and thus −∆ + V is self-adjoint with domain H2(Rd) and σess(−∆ + V ) =

σess(−∆) = [0,∞).

In N -Body theory the interaction potential W (x1−x2) is never a compact perturbation

of (−∆) even if W (x)
|x|→∞−−−−→ 0 “fast”. This is the case as W (x1−x2) 6→ 0 as |x1|, |x2| →

∞, i.e. by taking x2 = x1 + k where k is some constant vector. �

Theorem 9.5 (Kato). Let

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

16i<j6N

W (xi − xj)

with xi ∈ R3. Then this operator is self-adjoint on L2(R3N) with domain H2(R3N)

provided that V,W ∈ L2(R3) + Lp(R3) for 2 6 p 6∞. �

Proof. This follows from Theorem 5.12, i.e. we have to prove that V (xi)mW (xi − xj) are

bounded w.r.t. −
∑N

i=1 ∆xi = −∆R3N with relative bound smaller than ε for any ε > 0, i.e.

‖V (xi)Ψ‖L2 6 ε‖ψ‖H2(R3N ) + Cε‖ψ‖L2

‖W (xi − xj)Ψ‖L2 6 ε‖ψ‖H2(R3N ) + Cε‖ψ‖L2
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The first case follows as in the one-body theory. Concerning the second suppose that W ∈ L2,

then

‖W (x− y)Ψ‖2
L2 =

∫
|W (xi − xj)|2|Ψ(x1, . . . , xN)|2dx1 · · · dxN 6

6
∫ (∫

|W (xi − xj)|2
(

sup
xi

|Ψ(x1, . . . , xN)|2
)

dxi

)∏
j 6=i

dxj.

Here

sup
xi

|Ψ(x1, . . . , xN)|2 6 C‖Ψ(x1, . . . , xN)‖2
H2
xi

(R3)

thus

‖W (x− y)Ψ‖2
L2 6 C

∫ (∫
|W (xi − xj)|2‖Ψ(x1, . . . , xN)‖2

H2
xi

(R3)dxi

)∏
j 6=i

dxj =

= C

∫ (∫
‖W‖2

L2‖Ψ(x1, . . . , x̂i, . . . , xN)‖2
H2
xi

(R3)

)∏
j 6=i

dxj 6

6 ‖W‖2
L2(R3)‖Ψ‖2

H2(R3)

Note that if W ∈ L2(R3)+Lp(R3) then we can write it as W = W1 +W2 with W1 ∈ L2,W2 ∈
L∞ and ‖W1‖L2 6 ε. Thus

‖W (xi− xj)Ψ‖L2 6 ‖W1(xi− xj)Ψ‖L2 + ‖W2(xi− xj)Ψ‖L2 6 Cε‖Ψ‖H2(R3N ) + ‖W2‖∞‖Ψ‖L2

for all ε > 0.

q.e.d.

Remark 9.6. There is a nice story behind the proof of this theorem which can be found

in the paper “Tosio Kato’s Work on Non-Relativistic Quantum Mechanics” by Barry

Simon https://arxiv.org/pdf/1711.00528.pdf. �

Now we shall consider what σ(HN) looks like. Note that σess(HN) 6= σess(−∆R3N ) = [0,∞)

except when N = 1 or W ≡ 0.

Assume that

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

16i<j6N

W (xi − xj)

and V,W ∈ L2(R3)+Lp(R3) with 2 6 p <∞. We know that HN is self-adjoint and bounded

https://arxiv.org/pdf/1711.00528.pdf


178 CHAPTER 9. MANY-BODY QUANTUM THEORY

from below, i.e.

EN := inf σ(HN) > −∞.

Theorem 9.7 (Humitzer, Van Winter, Zhislin (HVZ)). Under these two assumptions

and W > 0, then σess(HN) = [EN−1,∞). �

Example 9.8. Consider the Helium Hamiltonian

H2 = −∆x1 −∆x2 −
Z

|x1|
− Z

|x2|
+

1

|x1 − x2|

with Z > 0. Then

σess(H2) =

[
inf σ

(
−∆− Z

|x|

)
,∞
)

=

[
−Z

2

4
,∞
)

since the spectrum of H1 is given by

σ(H1) =

(
− Z

2

4n2

)∞
n=1

∪ [0,∞)

where each eigenvalue has multiplicity n2.

Proof. (⊃) The key point is that

HN = HN−1 + (−∆xN ) + V (xN) +
N−1∑
i=1

V (xi − xN).

Take λ > EN−1. We prove that λ ∈ σess(HN) by constructing a singular Weyl sequence(
ψ(k)

)
k
⊂ L2(R3N) of unit vectors converging weakly to L2 and

‖(HN − λ)ψ
(k)
N ‖L2

k→∞−−−→ 0

We chose ψ(k) = ψ
(k)
N−1⊗ϕ(k), where ψ

(k)
N−1 is a Weyl sequence for EN−1 = inf σ(HN−1) ∈

σ(HN−1), i.e. ‖ψ(k)
N−1‖L2 = 1 and

‖(HN − λ)ψ
(k)
N−1‖L2

k→∞−−−→ 0

By a density argument, we can take ψ
(k)
N−1 such that suppψ

(k)
N−1 ⊂ BR3(N−1)(0, Rk) with
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Rk
k→∞−−−→ +∞

On the other hand, λ−EN−1 ∈ σess(−∆ +V ) = σess(−∆) = [0,∞). I.e. we can choose

a Weyl sequence ϕk such that ‖ϕ(k)‖L2(R3) = 1, ϕ(k) ⇀ 0 in L2(R3) and

‖(−∆xN + V (xN)− (λ− EN−1))ϕ(k)‖L2
k→∞−−−→ .

In face wan choose ϕk such that suppϕ(k) ⊂
{
x ∈ R3

∣∣ |x| > 2Rk

}
.

With the choice ψ
(k)
N = ψ

(k)
N−1 ⊗ ϕ(k) then

‖(HN − λ)ψ
(k)
N ‖ 6 ‖(HN−1 − EN−1)ψ

(k)
N−1 ⊗ ϕ

(k)‖+

+ ‖(−∆xN + V (xN)− (λ− EN−1))ψ
(k)
N−1 ⊗ ϕ

(k)‖+

+

∥∥∥∥∥
N−1∑
i=1

W (xi − xN)ψ
(k)
N−1 ⊗ ϕ

(k)

∥∥∥∥∥
We have

‖(HN−1 − EN−1)ψ
(k)
N−1 ⊗ ϕ

(k)‖ = ‖(HN−1 − EN−1)ψ
(k)
N−1‖ ‖ϕ

(k)‖︸ ︷︷ ︸
=1

k→∞−−−→ 0

‖(−∆xN + V (xN)− (λ− EN−1))ψ
(k)
N−1 ⊗ ϕ

(k)‖ = ‖ψ(k)
N−1‖︸ ︷︷ ︸
=1

‖(−∆xN + V (xN)− (λ− EN−1))ϕ(k)‖ k→∞−−−→ 0

∥∥∥∥∥
N−1∑
i=1

W (xi − xN)ψ
(k)
N−1 ⊗ ϕ

(k)

∥∥∥∥∥ =
∥∥1{|xi−xN |>Rk}︸ ︷︷ ︸

Rk→∞−−−−→0

W (xi − xN)ψ
(k)
N−1 ⊗ ϕ

(k)
∥∥
L2

k→∞−−−→ 0

since |xi| 6 Rk, |xN | > 2Rk.

(⊂) Here W > 0 is important. Take λ ∈ σess(HN). Then we can find a Weyl sequence ψ
(k)
N

such that ‖ψ(k)
N ‖L2 = 1, ψ

(k)
N

k→∞−−−⇀ 0 and

‖(HN − λ)ψ
(k)
N ‖

k→∞−−−→ 0

Using the Lemma below we may choose a partition of unity as described therein and

apply the IMS localisation formula

−∆ =
N∑
i=0

(
ϕi(−∆)ϕi − |∇ϕi|2

)
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Now we have λ = limk→∞

〈
ψ

(k)
N , HNψ

(k)
N

〉
and

〈
ψ

(k)
N , HNψ

(k)
N

〉
=

N∑
j=0

〈
ψ

(k)
N , ϕjHNϕjψ

(k)
N

〉
−

N∑
j=0

〈
ψ

(k)
N , |∇ϕj|2︸ ︷︷ ︸

C2

R2

ψ
(k)
N

〉

The right-most term converges uniformly in k to 0 as R→∞.

Further 〈
ψ

(k)
N , ϕ0HNϕ0ψ

(k)
N

〉
> EN︸︷︷︸

60

∫
R3N

|ϕ0|2|ψ(k))
N |

k→∞−−−→ 0

for fixed R since suppϕ0 is bounded and ψ
(k)
N converges strongly to 0 on bounded sets

by the Sobolev embedding as ψ
(k)
N is bounded in H1(R3N) and converges weakly to 0.

If j = 1, . . . , N

〈
ψ

(k)
N , ϕjHNϕjψ

(k)
N

〉
=

〈
ψ

(k)
N , ϕj

(
HN−1︸ ︷︷ ︸
>EN−1

+(−∆xN ) + V (xN)+

+
N∑
i=1

W (xi − xN)︸ ︷︷ ︸
>0

)
ϕjψ

(k)
N

〉
>

>
〈
ψ

(k)
N , ϕj

(
EN−1 + (−∆xN ) + V (xN)︸ ︷︷ ︸

&0
as R→∞

)
ϕjψ

(k)
N

〉
>

> EN−1

∫
|ϕj|2|ψ(k)

N |
2 + o(1)R→∞

Thus

N∑
j=1

〈
ψ

(k)
N , ϕjHNϕjψ

(k)
N

〉
> EN−1

(
1−

〈
ψ

(k)
N , ϕ0HNϕ0ψ

(k)
N

〉)
>

> EN−1(1 + o(1)k→∞) + o(1)R→∞

Altogether we may conclude

λ = lim
k→∞

〈
ψ

(k)
N , HNψ

(k)
N

〉
> EN−1

thus σess(HN) ⊂ [EN ,∞).

q.e.d.
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Remark 9.9. Indeed, without the assumption W > 0, we still have σess(HN) ⊃
[EN−1,∞). �

Lemma 9.10. There exists a partition of unity in R3N such that 1 =
∑N

j=0 ϕ
2
j , ϕj > 0

smooth such that

1) suppϕ0 ⊂
{
x = (x1, . . . , xN) ∈ R3N

∣∣ max |xi| 6 2R
}

2) suppϕj ⊂
{
x = (x1, . . . , xN) ∈ R3N

∣∣ |xj| > R
}

3) |∇ϕ0|, |∇ϕj| 6 C
R

where C is independent of R.

�

Proof. Exercise 14.2 q.e.d.

Theorem 9.11 (Zhislin). Consider the Hamiltonian

HN,Z =
N∑
i=1

(
∆xi −

Z

|xi|

)
+

∑
16i<j6N

1

|xi − xj|

with xi ∈ R3. This describes an atom with Z protons at the origin and N electrons.

We know that HN,Z is self-adjoint on L2(R3N) with domain H2(R3N) and σess(HN,Z) =

[EN−1,Z ,∞).

If N < Z + 1, then EN,Z < EN−1,Z and HN,Z has infinitely many bound states below its

essential spectrum. �

Remark 9.12. The condition N < Z + 1 follows also on physical grounds as at large

distance a nucleus with charge Z and N−1 electrons appears as a single charged particle

with charge Z − (N − 1). A further electron will be attracted to this particle if the

charge of the particle is positive, i.e. Z − (N − 1) > 0.

However, it is an open conjecture, called the Ionisation Conjecture, that if N >

Z+1, then EN,Z = EN−1,Z and HN,Z has no bound states below the essential spectrum.

In fact we know that it fails for bosons, i.e. an atom has bound states for bosonic
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electrons even for N > Z + 1, but it is an open problem fro fermionic electrons. �

Proof. We shall proceed by induction.

(N = 1) H1,Z = −∆ − Z
|x| on L2(R3) has eigenvalues − Z2

4n2 with multiplicity n2 for every n =

1, 2, . . . .

IS Assume that the theorem holds for N − 1 and consider N . We know that HN−1,Z has

a ground state EN−1,Z , i.e. EN−1,Z is an eigenvalue

HN−1,ZΨN−1 = EN−1,ZΨN

We wish to construct a sequence Ψ
(k)
n of normalised functions with disjoint support

and 〈
Ψ

(k)
N , HN,ZΨ

(k)
N

〉
< EN−1,Z

for all k = 1, 2, dots. By the min-max principle then

µk(HN−1,Z) 6 max
16i6k

〈
Ψ

(i)
N , HN,ZΨ

(i)
N

〉
< EN−1,Z = inf σess(HN,Z)

Thus all µk(HN,Z) are eigenvalues and µ1(HN,Z) = EN,Z < EN−1,Z .

We shall begin with a trial wave function Ψ
(k)
N = ΨN−1 ⊗ ϕ(k), i.e. Ψ

(k)
N (x1, . . . , xN) =

ΨN−1(x1, . . . , xN−1)ϕ(k)(xN).

Then

〈
Ψ

(k)
N , HNΨ

(k)
N

〉
− EN−1,Z =

〈
Ψ(k)
n ,

(
(HN−1 − EN−1,Z)+

+

(
−∆− Z

|xN |

N−1∑
i=1

1

|xi − xN |

))
Ψ

(k)
N

〉
=

= 0 +

∫
R3

|∇ϕ(k)(xN)|2 −
∫
R3

Z

|xN |
|ϕ(k)(xN)|2+

+
N−1∑
i=1

∫
R3N

|ΨN−1(x1, . . . , xN−1)|2|ϕ(k)(xN)|
|xi − xN |

dx1 · · · dxN

We will take ϕ(k) to be a radial function for in that case we may apply Newton’s
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theorem to see∫
R3

|ϕ(k)(xN)|2

|xi − xN |
dxN =

∫
R3

|ϕ(k)(xN)|2

max{|xi|, |xN |}
dxN 6

∫
R3

|ϕ(k)(xN)|2

|xN |
dxN

Thus we find

N−1∑
i=1

∫
R3N

|ΨN−1(x1, . . . , xN−1)|2|ϕ(k)(xN)|
|xi − xN |

dx1 · dxN 6 (N − 1)

∫
R3

ϕ(k)(x)

|x|
dx

We conclude that〈
Ψ

(k)
N , HNΨ

(k)
N

〉
− EN−1,Z 6

∫
R3

|∇ϕ(k)|2 −
∫
R3

Z0

|x|
|ϕ(k)(x)|2dx

where Z0 = Z − (N − 1) > 0.

Here we can chose ϕ(k)(x) = R
− 3

2
k ϕ0

(
x
Rk

)
for some ϕ0 ∈ C∞c (R3), radial, ‖ϕ0‖L2 = 1.

Then ∫
R3

|∇ϕ(k)|2 −
∫
R3

Z0

|x|
|ϕ(x)|2dx =

1

R2
k

∫
R3

|∇ϕ(0)|2 − 1

Rk

∫
R3

Z0

|x|
|ϕ(0)(x)|2dx < 0

If Rk large enough. We have to prove that
(

Ψ
(k)
N

)
k

have disjoint support for which it

is enough to establish that ϕ(k) have disjoint support, which we can do by choosing

suppϕ(0) ⊂ {1 < |x| < 2} and Rk = 4k.

q.e.d.

9.1 Particle Statistics

If we have a system of N identical particles with wave function ΨN ∈ L2(R3N), then it has

to satisfy one of the following two conditions

� Bosons: for all σ ∈ S(N)

ΨN(x1, x2, . . . , xN) = ΨN(xσ(1), xσ(2), . . . , xσ(N))
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� Fermions: for all σ ∈ S(N)

ΨN(x1, x2, . . . , xN) = sgn(σ)ΨN(xσ(1), xσ(2), . . . , xσ(N))

Example 9.13. � Bosons: ΨN(x1, . . . , xN) = (u⊗N)(x1, . . . , xN) = u(x1) · · ·u(xN)

� Fermions:

ΨN(x1, . . . , xN) = (u1 ∧ · · · ∧ uN)(x1, . . . , xN) =

=
1√
N !

det


u1(x1) u2(x1) · · · uN(x1)

u1(x2) u2(x2) · · · uN(x2)
...

...

u1(xN) u2(xN) · · · uN(xN)


where (ui)

N
i=1 is an orthonormal family in L2(R3). This is called the Slatter de-

terminant.

Theorem 9.14. The Kato theorem, HVZ theorem and Zhislin’s theorem hold both for

bosons and fermions, i.e. for

HN =
N∑
i=1

(−∆xi + V (xi)) +
∑

16i<j6N

W (xi − xj)

on L2
s(R3) and L2

a(R3). �

Theorem 9.15 (Ground State Energy of Non-Interacting System). Consider the Hamil-

tonian

HN =
N∑
i=1

hxi

on L2
s(R3) or L2

a(R3) where h is a self-adjoint operator on L2(R3) and h is bounded

from below. Then

1) For bosons, µ1(HN) = Nµ1(h),

2) For fermions, µ1(HN) =
∑N

i=1 µi(h).
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�

Proof.

Bosons Lower bound: h > µ1(h)IL2(R3). Then

HN =
N∑
i=1

hxi > Nµ1(h)IL2(R3N )

here

hxi = IL2(R3) ⊗ · · · ⊗h
↑

ith variable

⊗ · · · ⊗ IL2(R3)

and

IL2(R3N ) = IL2(R3) ⊗ · · · ⊗ IL2(R3)

Thus µ1(HN) > Nµ1(h). For the upper bound, per definitioenm µ1(h) = inf‖u‖L2=1 〈u, hu〉,
µ1(HN) = inf‖ΨN‖L2 〈ΨN , HNΨN〉.

If we choose ΨN = u⊗N , then

〈ΨN , HNΨN〉 =

〈
u⊗N ,

N∑
i=1

hxiu
⊗N

〉
=

N∑
i=1

‖u‖N−1
L2 〈u, hu〉 = N‖u‖N−1

L2 〈u, hu〉

thus

µ1(HN) 6 inf
‖u‖L2=1

〈
u⊗N , hu⊗N

〉
= Nµ1(h)

Fermions For this we need the two lemmas below. For the lower bound we have for a wave

function ΨN , its density matrix 0 6

gammaΨN 6 1, Tr γΨN = N and

〈ΨN , HNΨN〉 = Tr[hγΨN ] >
N∑
i=1

µi(h)

For the upper bound choose ΨN = u1∧· · ·∧uN with (ui)i being an orthonormal family.

Then

γΨN =
N∑
i=1

|ui〉 〈ui|

Then

〈ΨN , HNΨN〉 = Tr(hγΨN ) =
N∑
i=1

〈ui, hui〉
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Minimising over all orthonormal families yields

µ1(HN) 6
N∑
i=1

µi(h).

q.e.d.

Lemma 9.16 (Pauli-Exclusion Principle). Take ΨN be an anti-symmetric wave func-

tion on L2(R3N). Define the density matrix (one-body reduced density matrix) to be the

positive, trace-class operator with trace N , γΨN : L2(R3)→ L2(R3) given by the kernel

γΨN (x; y) = N

∫
R3(N−1)

ΨN(x, x2, . . . , xN)ΨN(y, x2, . . . , xN)dx2 · · · dxN

Indeed ΨN 7→ |ΨN〉 〈ΨN | is a projection on L2
a(R3N) with kernel

(|ΨN〉 〈ΨN |)(X;Y ) = ΨN(X)ΨN(Y )

with X, Y ∈ R3N . Thus γΨN = N Tr2→N |ΨN〉 〈ΨN |.
Then 0 6 γΨN 6 IL2(R3) as quadratic forms. �

Proof. It is easy to see that γψN > 0 because |ΨN〉 〈ΨN | and

Tr γΨN =

∫
R3

γΨN (x;x)dx = N

∫
R3N

|ΨN(x, x2, . . . , xN)|2dxdx2 · · · dxN = N0

It is trivial that 0 6 γΨN 6 N , but in fact γΨN 6 1.

From QFT we have 〈f, γΨNf〉 =
〈
ΨN , a

†(f)a(f)ΨN

〉
. By the CCR (canonical commutation

relations)

‖f‖2
L2 =

{
a†(f), a(f)

}
> a†(f)a(f) + a(f)a†(f) > a†(f)a(f)

Thus

〈f, γΨNf〉 6
〈
ΨN ,

∥∥ f ∥∥ 2
L2ΨN

〉
= ‖f‖2

L2

for all f ∈ L2(R3). Thus γΨN 6 1.

A second proof of γΨN 6 1: We know that

γΨN =
∞∑
i=1

λi |fi〉 〈fi|
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where λi are eigenvalues and (fi)i is an orthonormal basis of L2(R3).

The inequality γΨN 6 1 is equivalent to λi 6 1 for all i. Let us prove that λ1 6 1. We know

that L2(R3N) = L2(R3)⊗ · · · ⊗ L2(R3) has an orthonormal basis of the form

{fi1 ⊗ · · · ⊗ fiN}i1,...,iN>

Thus we can write

ΨN =
∑

i1,...,iN

ci1,...,iNfi1 ⊗ · · · ⊗ fiN .

Because ΨN is anti-symmetric it follows that ci1,...,iN if some ij = ik for j 6= k. Then we

compute that

1 = ‖ΨN‖2
L2 =

∑
i1,...,iN

|ci1,...,iN |2

and

〈f, γΨNf〉 =

∫
R3N

f(x)ΨN(x, x2, . . . , xN)ΨN(y, x2, . . . , xN)f(y)dxdydx2 · · · dxN =

=
∑

i1,...,iN

∑
j1,...,jN

∫
f(x)fi1(x) · · · fiN (xN)

fj1(y) · · · fjN (xN)f(y)dxdydx2 · · · dxNci1,...,iN cj1,...,jN =

=
∑

i1,...,iN

∑
j1,...,jN

cj1,...,jN 〈f, fi1〉 〈fj1 , f〉
N∏
k=2

〈fik , fjk〉L2
xk

∏N
k=2 〈fik , fjk〉L2

xk

6= 0 iff ik = jk for all k = 2, . . . , N and this equal 1 in this case. Thus

〈f, γΨNf〉 =
∑

i1,...,iN ,j1

cj1,i2,...,iN 〈f, fi1〉 〈fj1 , f〉

Then by the Young inequality we have

| 〈f, γΨNf〉 | 6
∑

i1,...,iN ,j1

|ci1,...,iN |2| 〈fi1 , f〉 |2 + |cj1,i2,...,iN |2| 〈fj1 , f〉 |2

2
6 ‖f‖2

L2

q.e.d.

Lemma 9.17. If h is a self-adjoint operator on L2(R3), and 0 6 γ 6 1, Tr γ = N .
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Then

inf
06γ61
Tr γ=N

Tr[hγ] = inf
(ϕi)

N
i=1 ONF

N∑
i=1

〈ϕi, hϕi〉 =
N∑
i=1

µi(h)

�

Proof. First suppose that

h =
∞∑
i=1

µi |ui〉 〈ui|

Then

Tr(hγ) =
∞∑
i=1

µi 〈ui, γui〉︸ ︷︷ ︸
=:αi

with 0 6 αi 6 1,
∑∞

i=1 αi = Tr γ = N .

The result follows from

inf

{
N∑
i=1

µiαi

∣∣∣∣∣
∞∑
i=1

αi = N

}
= µ1 + · · ·+ µN

The general case is left as an exercise.

q.e.d.

Remark 9.18 (Real Calculations). “Interaction” problem, use Density functional the-

ory

inf
‖ΨN‖L2

〈ΨN , HNΨN〉 = inf
06γ61
Tr γ=N

inf
ΨN 7→γΨN

=γ
〈ΨN , HNΨN〉

If we know that E(γ) := infΨN 7→γΨN
=γ 〈ΨN , HNΨN〉 then the problem

inf
06γ61
Tr γ=N

E(γ)

can be solved practically. However, computing E(γ) is impossible even by Quantum

Computers.

However, we can approximate E(γ). �

Definition 9.19 (Hartree-Fock Approximation). For fermions (electrons). Let ΨN =
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u1 ∧ · · · ∧ uN and

HN =
N∑
i=1

(−∆xi + V (xi)) +
N∑
i<j

W (xi − xj).

Then

〈ΨN , HNΨN〉 = Tr[(−∆ + V )γ] +
1

2

∫∫
W (x− y)

(
γ(x, x)γ(y, y)− |γ(x, y)|2

)
dxdy

with γ = γΨN =
∑N

i=1 |ui〉 〈ui|. This is called the Hartree-Fock functional.

For bosons one takes ΨN = u⊗n and

〈ΨN , HNΨN〉 = N 〈u, (−∆ + V )u〉+
N(N − 1)

2

∫∫
W (x− y)|u(x)|2|u(y)|2

the Hartree functional.

�

Remark 9.20. In the case of Bose-Einstein Condensation with very-short range po-

tentials this can be further simplified to the Gross-Pitaevski functional

EGP(u) = 〈u, (−∆ + V )u〉+ 4πa

∫
R3

|u(x)|4dx

here
4πa

N
:= inf

{∫
|∇f |2 +

1

2

∫
W (x)|f(x)|2dx

∣∣∣∣ f(x)
|x|→∞−−−−→ 1

}
In the exercises we consider the case

W =

+∞, if |x| < a

0, if |x| > a

�
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Chapter 10

Entropy

Recall that for a mixed state γ in a Hilbert space, then γ > 0 and Tr[γ] = 1. Thus

γ =
∑

i λi |ui〉 〈ui| and thus for any function defined on the spectrum

f(γ) =
∑
i

f(λi) |ui〉 〈ui| .

Definition 10.1 (Von Neumann Entropy). For a mixed state γ we define

S(γ) := −Tr[γ log(γ)] = −
∑
i

λi log λi

�

Proposition 10.2. 1) S(γ) > 0, λi ∈ [0, 1], S(γ) = 0 iff γ is a pure state.

2) If dim H = N <∞, then maxγ S(γ) = logN , with optimiser γ = 1
N

∑N
i=1 |ui〉 〈ui|

3) Gibbs Variational Principle: The ground state energy E0 of a self-adjoint Hamil-

tonian A is given by

E0 = inf
γ>0

Tr γ=1

Tr[Aγ] = µ1(A)

(this is at zero temperature).

�

Proof. 1) For t ∈ (0, 1) the function t 7→ −t log t is positive and equal to 0 at t = 0, 1.

191
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2) The function f : t 7→ t log t is convex in [0,∞) as f ′′(t) = 1
t
> 0. Thus

−S(γ) =
N∑
i=1

f(λi) = N

N∑
i=1

f(λi)

N
> Nf

(
N∑
i=1

λi
N

)
= Nf

(
1

N

)
= − log(N)

q.e.d.

If we are in positive temperature T > 0, then

Theorem 10.3 (Gibbs Variational Principal). The free energy F is given by

F = inf
γ>0

Tr γ=1

(Tr[Aγ]− TS(γ)) =: −logTr(e−A/T )

and there exists a minimiser γA = e−A/T

ZA
where ZA = Tr[e−A/T ] provided that e−A/T is

a trace class operator.

�

Theorem 10.4 (Klein Inequality). Given a function F : R2 → R of the form

F (x, y) =
N∑
i=1

fi(x)gi(y) > 0

Then for any self-adjoint trace class operator A,B (we do not require A,B > 0, Tr[A] =

1 = Tr[B]) then

Tr[F (A,B)] > 0..

�

Remark 10.5. If we know that A,B > 0, then it suffices to assume F (x, y) > 0 for

x, y > 0. More generally, all we need here is F (x, y) > 0 for x ∈ σ(A), y ∈ σ(B). �

Proof. By the spectral theorem, A =
∑

α aα |uα〉 〈uα| and B =
∑

α bβ |vβ〉 〈vβ|. Thus

F (A,B) =
∑
i

fi(A)gi(B) =
∑
i,α,β

fi(aα)gi(bβ) |uα〉 〈uα| |vβ〉 〈vβ|

Tr[F (A,B)] =
∑
i,α,β

fi(aα)gi(bβ)| 〈uα, vβ〉 |2 =
∑
α,β

| 〈uα, vβ〉 |2
∑
i

fi(aα)gi(bβ)︸ ︷︷ ︸
>0

> 0



193

q.e.d.

Corollary 10.6. If f : R→ R is a convex function and A,B are self-adjoint trace-class

operators, then

Tr[f(A)− f(B)− f ′(B)(A−B)] > 0.

Moreover, if A,B > 0, we only need f : R+ → R be convex. �

Proof. Let F (x, y) = f(x) − f(y) − f ′(y)(x − y). Then F (x, y) > 0 by convexity and the

claim follows from Klein’s inequality. (Note that F (x, y) = 1
2
f(ϑ)(x − y)2 for some ϑ in

between x and y by Taylor’s theorem if f is suitably differentiable). q.e.d.

Remark 10.7. In Klein’s inequality

F (x, y) =
∑
i

fi(x)gi(x) =
∑
i

gi(x)fi(x)

but in general ∑
i

fi(A)gi(B) 6=
∑
i

gi(B)fi(A)

However, by cyclicity of the trace

Tr

[∑
i

fi(A)gi(B)

]
= Tr

[∑
i

gi(B)fi(A)

]
.

�

As consequence if f(t) = t log(t) and A,B > 0

Tr[A logA−B logB − (1 + logB)(A−B)] > 0

Thus

Tr[A logA− A logB] > Tr(A−B) = 1− 1 = 0

for the penultimate equality holds for density matrices.
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Definition 10.8 (Relative Entropy ).

S(A|B) = Tr[A logA− A logB].

�

Theorem 10.9 (Improved Klein Inequality for Relative Entropy). If A,B are mixed

states, then

S(A|B) >
1

2
Tr
[
|A−B|2

]
In particular, S(A|B) = 0 iff A = B. Thus S(A|B) can be understood as a sort of

distance between A and B. �

Proof. Using Klein’s inequality for f(t) = t log(t) for

F (x, y) = f(x)− f(y)− f ′(y)(x− y)− 1

2
(x− y)2.

the result follows if we can prove that F (x, y) > 0 for all x, y ∈ [0, 1].

This follows from F (x, y) =
(

1
2
f ′′(ϑ)− 1

2

)
(x− y)2, for some ϑ in between x, y. Here f ′′(ϑ) =

1
ϑ
> 1. q.e.d.

Remark 10.10. We can check

F (x, y) = x log x− y log y − (1 + log y)(x− y)− 1

2
(x− y)2 =

= x log x− y log y − (x− y)− 1

2
(x− y)2 > 0

for all x, y ∈ [0, 1] and

d

dy
F (x, y) = −x

y
+ 1 + x− y = (1− x

y
)(1− y),

d2

dy2
F (x, y) = (1 +

x

y2
)(1− y)− (1− x

y
).

Thus y 7→ F (x, y) has a minimum at x = y for which F (x, x) = 0, i.e. F (x, y) > 0.

�
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Proof of Theorem 10.3. Take A self-adjoint such that e−
A
T is trace class. Let consider T = 1,

otherwise rescale A. We check that

Tr[AγA]− S(γA) = Tr(AγA) + Tr[γA log γA] = Tr(AγA)− Tr(γA logZA)− Tr(γAA) =

= − logZA Tr(γA) = − logZA.

It remains to prove that for all mixed states γ

Tr(Aγ)− S(γ) > Tr(AγA)− S(γA)

and equality only holds for γ = γA. Note that

S(γ|γA) = Tr[γ log γ − γ log(γA)] = Tr[γ log γ] + Tr[γ(logZA + A)] =

= −S(γ) + Tr(Aγ) + logZA = Tr(Aγ)− S(γ)− Tr(AγA) + S(γA)

and we know that S(γ|γA) > 0 and 0 iff γ = γA. q.e.d.

This implies that Tr(Aγ)− S(γ) > − log(Tr e−A) and thus S(γ) 6 Tr(Aγ)− logTr e−A.

Indeed S(γ) = maxA
(
Tr(Aγ)− log Tr(e−A)

)
. This expression tells us that γ 7→ S(γ) is

concave. Because γ 7→ Tr(Aγ) is linear in γ (as the “maximum over linear/concave functions”

is a concave function).

Definition 10.11 (Partial Trace). Given a Hilbert space H = H1 ⊗H2. Let ρ be a

density matrix on H . Then ρ1 = Tr2 ρ is a density matrix on H1 and ρ2 = Tr1 ρ is a

density matrix on H2.

Here the partial trace Tri is defined as follows. We can write ρ =
∑

i ρ
(1)
i ⊗ ρ

(2)
i where

ρ
(j)
i : Hj →Hj. Then

Tr1(ρ) =
∑
i

Tr[ρ
(1)
i ]ρ

(2)
i

and similarly for Tr2 ρ. �

Remark 10.12. It might happen that even if ρ is a pure state on H = H1 ⊗H2 but

ρ1, ρ2 are mixed states. �



196 CHAPTER 10. ENTROPY

Example 10.13. Let

ρ =

∣∣∣∣∣∑
i

λiui ⊗ vi

〉〈∑
i

λiui ⊗ vi

∣∣∣∣∣ =
∑
i,j

λiλj |ui ⊗ vi〉 〈uj ⊗ vj| =

=
∑
i,j

λiλj |ui〉 〈uj| ⊗ |vi〉 〈vj| .

Then

ρ1 = Tr2 ρ =
∑
ij

λiλj |ui〉 〈uj| 〈vi, vj〉 =
∑
i

|λi|2 |ui〉 〈ui|

ρ2 = Tr1 ρ =
∑
i

|λi|2 |vi〉 〈vi|

Remark 10.14. If ρ is a pure state in H1 ⊗H2, then the eigenvalues of ρ1 and ρ2 are

the same counting multiplicity (expect for 0). �

Remark 10.15. Given a mixed state ρ1 on H1, then if dim H2 > dim H1 there exists

a pure state ρ on H1 ⊗H2 such that ρ1 = Tr2 ρ. �

Proposition 10.16. 5) Sub-Additivity: Given a mixed state ρ on H1 ⊗ H2 with

partial traces ρ1, ρ2. Then

S(ρ) 6 S(ρ1) + S(ρ2).

�

Proof. We claim that

S(ρ1) + S(ρ2)− S(ρ) = S(ρ|ρ1 ⊗ ρ2) > 0

from which the assertion follows. Noting that log(AB) = log(A) + log(B) for commuting

operators A,B, in particular for

(rho1 ⊗ 1H2)(1H1 ⊗ ρ2) = ρ1 ⊗ ρ2
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we have

S(ρ|ρ1 ⊗ ρ2) = Tr[ρ log ρ− ρ log(ρ1 ⊗ ρ2)] = Tr[ρ log ρ− ρ log(ρ1 ⊗ 1H2)− ρ log(1H1 ⊗ ρ2)] =

= Tr12(ρ log ρ)− Tr12(ρ log ρ1)− Tr12(ρ log ρ2) =

= Tr12(ρ log ρ)− Tr1(ρ1 log ρ1)− Tr2(ρ log ρ2) = −S(ρ) + S(ρ1) + S(ρ2).

q.e.d.

Remark 10.17. In general there does not exist an inequality S(ρ12) > S(ρ1), e.g. it

might happen that ρ12 is pure, i.e. S(ρ12) = 0, but ρ1 is not pure, S(ρ1) > 0. In this

case

S(ρ12) 6 S(ρ1) + S(ρ2)

is trivial. What really happens here is the “cancelation of information” �

Theorem 10.18 (Araki-Lieb).

S(ρ12) > |S(ρ1)− S(ρ2)|

�

Proof. Using sub-additivity we have S(ρ12) 6 S(ρ1) + S(ρ2). By the purification lemma,

there exists a pure state ρ123 on H1⊗H2⊗H3 such that ρ12 = Tr3 ρ123. Then S(ρ12) = S(ρ3)

and S(ρ2) = S(ρ13) and thus

S(ρ3) 6 S(ρ1) + S(ρ13)

which implies that S(ρ13) > S(ρ3)−S(ρ1) Similarly we find S(ρ13) > |S(ρ3)−S(ρ1)|. q.e.d.

Theorem 10.19 (Strong Sub-Additivity - SSA). If ρ123 is a mixed state in H1⊗H2⊗
H3, then

S(ρ1) + S(ρ123) 6 S(ρ12) + S(ρ13).

�
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Remark 10.20 (Interpretation). We can interpret sub-addivity as

S(A ∪B) 6 S(A) + S(B)

but SSA as

S(A ∪B) + S(A ∩B) 6 S(A) + S(B)

This deep result was proven by Lieb-Ruskai in 1973. �

SSA is equivalent to

Theorem 10.21 (Monotonicity of Relative Entropy). Let ρ12, σ12 be density matrices

on a Hilbert space H1 ⊗H2.

S(ρ12|σ12) > S(ρ1|σ2).

�

Remark 10.22. This monotonicity implies SSA as follows:

S(ρ13) + S(ρ2)− S(ρ123) = S(ρ123|ρ13 ⊗ ρ2) > S(ρ12|ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)− S(ρ12)

Thus

S(ρ12) + S(ρ13) > S(ρ1) + S(ρ123)

�

Remark 10.23. This is related to “quantum channels”. The partial trace is replaced

by the “completed positive trace preserving maps”. �

Idea of Proof. The Golden-Thompsen inequality tells us that

Tr(eA+B) 6 Tr(eAeB).

which is equivalent to

Tr(elnA+lnB) 6 Tr(AB)
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Lieb’s extension

Tr elnA+lnB−lnC 6 Tr

 ∞∫
0

A
1

C + t
B

1

C + t
dt


q.e.d.
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