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Problem 1. Let A be a self-adjoint operator on a separable Hilbert space H . Prove that
the following statements are equivalent:

(A+ i)−1 is compact ⇐⇒ (A2 + 1)−1/2 is compact ⇐⇒ (A2 + 1)−s is compact ∀s > 0.

Problem 2. Consider the free Schrödinger dynamics u(t) = eit∆u0 on L2(R3), t ∈ R.
Prove that if either u0 ∈ L1(R3) ∩ L2(R3) or u0 ∈ H2(R3), then

lim
|t|→∞

∫
R3

|u(t, x)|2

|x|s
dx = 0, ∀0 < s < 3.

Problem 3. Consider the operator A on L2(0, 1) defined by

(Af)(x) = −(x2020f ′(x))′ − x
∫ 1

0

yf(y)dy, D(A) = C∞c (0, 1).

(a) Prove that A is symmetric and bounded from below.

(b) Prove that AF , the Friedrichs’ extension of A, has at most one negative eigenvalue.

Problem 4. Consider the operator A on L2(R3) defined by

(Au)(x) = −∆u(x) +

∫
R3

e−π|x−y|
2

u(y)dy, D(A) = H2(R3).

(a) Compute FAF ∗, with F the Fourier transform. Deduce that A is self-adjoint and
has spectrum σ(A) = [1,∞).

(b) Consider B = A+ |x|2 with D(B) = C∞c (R3). Prove that BF , the Friedrichs’ extension
of B, has compact resolvent.

Problem 5. Let λ > 0 and consider the operator A on L2(R3) defined by

A = −∆− e−λ|x|

|x|+ λ
, D(A) = H2(R3).

(a) Prove that A is self-adjoint and its number of negative eigenvalues is bounded by
C min{λ−3/2, λ−9/2} for a universal constant C > 0.

(b) Consider the asymptotic completeness:

“The wave operators lim
t→±∞

eitAeit∆, lim
t→±∞

eit∆eitA exist on L2(R3)”.

Prove that it holds for λ sufficiently large, but fails for λ sufficiently small.

Problem 6. Consider the operator A on L2(R) (c.f. Homework 7.2 & Midterm exam)

(Af)(x) = (1 + x2)f(x), D(A) =

{
f ∈ L2(R) : (1 + x2)f ∈ L2(R),

∫
R
f = 0

}
.

Prove that A has at least two different self-adjoint extensions.


