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Problem 1. Let Z > 1 and consider the Hartree functional

E (u) =

∫
R3

|∇u(x)|2 dx−
∫
R3

Z|u(x)|2

|x|
dx+

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dx dy.

(i) (5 points) Prove that the ground state energy

E = inf
{
E (u) : u ∈ H1(R3), ‖u‖L2(R3) = 1

}
satisfies

−Z
2

4
≤ E ≤ −(Z − 1)2

4
.

(ii) (10 points) Given that E has a minimizer u0 ∈ H1(R3), which solves the equation

−∆u0(x)− Z

|x|
u0(x) + 2(|u0|2 ∗ | · |−1)(x)u0(x) = µu0(x)

in the distributional sense (with a constant µ ∈ R). Prove that u0 ∈ H2(R3).

Solution:



Name:

Problem 2. We know that the operator A = −∆ + |x|2 can be defined as a self-adjoint
operator on L2(R3) with domain D(A) ⊃ C∞c (R3) by Friedrichs’ method.

(i) (5 points) Prove that A ≥ 3.

(ii) (5 points) Prove that A2 − |∆|2 − |x|4 is bounded from below.

(iii) (10 points) Prove that the multiplication operator V (x) = |x| is A-relatively compact.

Solution:



Name:

Problem 3. Let A be a positive trace class operator on a separable Hilbert space H with
Tr[A] = 1.

(i) (5 points) Let µk(A) be the k-th largest eigenvalue of A (i.e. −µk(A) is the k-th
min-max value of −A). Prove that for any projection P , we have

0 ≤ µk(PAP ) ≤ µk(A), ∀k ∈ N.

(ii) (5 points) Let {Pn}∞n=1 be a sequence of projections such that ‖Pnu‖ → 0 for all
u ∈ H. Prove that

lim
n→∞

Tr[PnAPn] = 0.

(iii) (10 points) Prove that if the entropy S(A) = −Tr[A logA] is finite, then

lim
n→∞

S(PnAPn) = 0

with the projections {Pn} as in (ii). Could the condition S(A) <∞ be relaxed?

Solution:



Name:

Problem 4. We know that for any λ > 0, A = −∆− e−λ|x| is a self-adjoint operator on
L2(R3) with domain D(A) = H2(R3) and σess(A) = [0,∞).

(i) (10 points) Let Nλ be the number of negative eigenvalues of A. Prove that

Nλ ≤ Cλ−3 for all λ > 0 (with C independent of λ) and Nλ →∞ as λ→ 0.

(ii) (10 points) Prove that if λ is large enough, then A has no eigenvalue.

Solution:



Name:

Problem 5. Let g ∈ C∞c (R3) and consider the operator

A = −∆− 1

1 + 4|x|2
− |g〉〈g|.

(i) (5 points) Prove that A is a self-adjoint operator on L2(R3) with domain D(A) =
H2(R3) and σess(A) = [0,∞).

(ii) (10 points) Prove that the following strong limit exists for all u ∈ L2(R3)

lim
t→∞

e−itAeit(−∆)u.

(iii) (10 points) Let Eb
N (or Ef

N) be the ground state energy of N bosons (or fermions)
with Hamiltonian

∑N
k=1Axk . Prove that for all N ∈ N,

Eb
N ≥ −N‖g‖2

L2(R3) and Ef
N ≥ −‖g‖

2
L2(R3).

Solution:


