MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. Peter Müller Summer term 2019 Tutorial Sheet 1 24.04.2018

Functional Analysis

T1 [6 points]. Let (X, d) be a metric space. Let $x \in X$, $\varepsilon > 0$ and let $B_{\varepsilon}(x)$ denote the *open ball* of radius ε centred at x, i.e. $B_{\varepsilon}(x) := \{y \in X \mid d(x, y) < \varepsilon\}$.

- (i) Show that the closed ball $\bar{B}_{\varepsilon}(x) := \{y \in X \mid d(x, y) \leq \varepsilon\}$ is closed.
- (*ii*) Prove that $\overline{B_{\varepsilon}(x)} \subseteq \overline{B}_{\varepsilon}(x)$.

(*iii*) Give an example for a metric space where, in general, $\overline{B_{\varepsilon}(x)} \neq \overline{B}_{\varepsilon}(x)$.

T2. Let $X = Y := \mathbb{R}$ and consider the two topological spaces (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) , where \mathcal{T}_2 is the standard topology on \mathbb{R} induced by the Euclidean metric and

$$\mathcal{T}_1 := \{\emptyset, \mathbb{R}\} \cup \{\mathbb{R} \setminus A \mid A \subseteq \mathbb{R} \text{ is countable}\}.$$

Prove the following:

- (i) The pair (X, \mathcal{T}_1) is in fact a topological space.
- (*ii*) Every mapping $F: X \to Y$ is sequentially continuous.
- (*iii*) The mapping $G: X \to Y, x \mapsto x$ is not continuous.

T3. Let $1 \le p \le q < \infty$. Define

$$c_c := \{ x \in \ell^{\infty} : x_j = 0 \text{ for all but finitely many } j \in \mathbb{N} \},\$$

$$c_0 := \{ x \in \ell^{\infty} : x_j \to 0 \text{ for } j \to \infty \}.$$

Moreover if $A \subseteq X$ and d is a metric on X we denote by \overline{A}^d the closure of A in X with respect to the metric d. Show:

- (i) $c_c \subseteq \ell^p \subseteq \ell^q \subseteq c_0$.
- (*ii*) $\overline{c_c}^{d_q} = \ell^q$.
- (*iii*) $\overline{c_c}^{d_{\infty}} = c_0$.

T4. Show: If a topological space (X, \mathcal{T}) has a countable subbase, it has a countable base.