0 Recapitulation of basic notions

Let X be a set and $\mathscr{P}(X)$ its power set.

0.1 Topological spaces

0.1 Definition. • $\mathcal{T} \subseteq \mathcal{P}(X)$ is a topology $:\iff$

- (1) $\emptyset, X \in \mathcal{T}$.
- (2) \mathcal{T} is closed under arbitrary unions (i.e. if *I* is an arbitrary index set and for every $\alpha \in I$ let a set $A_{\alpha} \in \mathcal{T}$ be given. Then

$$\bigcup_{\alpha \in I} A_{\alpha} \in \mathcal{T}$$

holds.).

(3) \mathcal{T} is closed under finite intersections (i.e. if $n \in \mathbb{N}$ and $A_1, \ldots, A_n \in \mathcal{T}$, then

$$\bigcap_{k=1}^{n} A_k \in \mathcal{T}$$

holds.).

- (X, \mathcal{T}) is called *topological space* (often just X)
- $A \in \mathscr{P}(X)$ is open $:\iff A \in \mathscr{T}$.
- Let $\mathcal{T}_1, \mathcal{T}_2$ be topologies on X. \mathcal{T}_1 is *finer* than $\mathcal{T}_2 : \iff \mathcal{T}_1 \supseteq \mathcal{T}_2$ and *coarser* than $\mathcal{T}_2 : \iff \mathcal{T}_1 \subseteq \mathcal{T}_2$.

0.2 Examples. (a) *Indiscrete topology:* $\mathcal{T} = \{\emptyset, X\}.$

- (b) Discrete topology: $\mathcal{T} = \mathcal{P}(X)$.
- (c) Euclidean (or standard) topology on \mathbb{R}^d , $d \in \mathbb{N}$: $A \subseteq \mathbb{R}^d$ is open $:\iff \forall x \in A \exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A$, where $B_{\varepsilon}(x) := \{y \in \mathbb{R}^d : |x - y| < \varepsilon\}$ is the Euclidean ball of radius $\varepsilon > 0$ about $x \in \mathbb{R}^d$.

Induced topology on subsets

0.3 Definition. Let (X, \mathcal{T}) be a topological space, $A \in \mathcal{P}(X)$ (not necessarily open!). *Relative topology* on *A*:

$$\mathcal{T}_A := \{ B \subseteq A : \exists C \in \mathcal{T} \text{ with } B = C \cap A \} \subseteq \mathcal{P}(A).$$

0.4 Remark. (a) \mathcal{T}_A is topology on A.

(b) If $A \notin \mathcal{T}$ and $B \in \mathcal{T}_A$ then it may happen that $B \notin \mathcal{T}$.

Example. Let $X = \mathbb{R}$ with standard topology, A = [0, 1]. Then $B := [0, 1/2] \in \mathcal{T}_A$ but $B \notin \mathcal{T}$.

0.5 Definition. Let X be a topological space, $A \subseteq X, x \in X$.

(a) A is closed : $\iff A^c := X \setminus A \in \mathcal{T}$.

- (b) $U \subseteq X$ (not necessarily open) is a *neighbourhood* of $x : \iff \exists A \in \mathcal{T}$ such that $x \in A$ and $A \subseteq U$.
- (c) X is a *Hausdorff space* : \iff for all $x, y \in X, x \neq y$, there exist neighbourhoods U_x of x and U_y of y such that $U_x \cap U_y = \emptyset$.
- (d) x is a *limit point* of A (or *accumulation point*) : \iff for all neighbourhoods U of x

 $U \cap A \neq \emptyset.$

Note: Every point of A is also a limit point according to this definition.

- (e) x is an *interior point* of A : \iff there exists a neighbourhood U of x such that $U \subseteq A$.
- (f) x is a *boundary point* of A : ⇒ for every neighbourhood U of x: U ∩ A ≠ Ø and U ∩ A^c ≠ Ø.
 Boundary of A: ∂A := {x ∈ X : x boundary point of A}.
- (g) Interior of A: $\mathring{A} := A \setminus \partial A = \{x \in X : x \text{ interior point of } A\}$ closure of A: $\overline{A} := A \cup \partial A = \{x \in X : x \text{ limit point of } A\}.$
- (h) A is dense in $X :\iff X = \overline{A}$.

0.6 Lemma. Let X be a topological space, $A \subseteq X$.

- (a) A is open $\iff \forall x \in A : x \text{ is an interior point of } A$.
- (b) A is closed $\iff A = \overline{A}$.
- (c) \overline{A} , ∂A are closed.

Proof. Exercise.

- **0.7 Definition.** Let (X, \mathcal{T}) be a topological space, $\mathcal{B} \subseteq \mathcal{T}$ a family of open sets.
- (a) \mathscr{B} is a *base* for $\mathscr{T} : \iff \mathscr{T}$ consists of unions of sets from \mathscr{B} .
- (b) \mathscr{S} is a *subbase* for $\mathscr{T} : \iff$ finite intersections of sets from \mathscr{S} form a base.
- (c) $\mathcal{N} \subseteq \mathcal{T}$ is a *neighbourhood base* at $x \in X$: \iff every $N \in \mathcal{N}$ is a neighbourhood of x and for every neighbourhood U of x there exists $N \in \mathcal{N}$ with $N \subseteq U$.

0.8 Remark.

Let $\mathscr{S} \subseteq \mathscr{P}(X)$. Then there exists a topology \mathscr{T} on X such that \mathscr{S} is a subbase for \mathscr{T} and \mathscr{T} is the coarsest topology containing \mathscr{S} . Jargon: \mathscr{T} is generated by \mathscr{S} .

0.9 Example. Consider \mathbb{R}^d with standard topology. Let $x \in \mathbb{R}^d$.

- (a) $\{B_{1/n}(x) : n \in \mathbb{N}\}$ is a neighbourhood base at x.
- (b) {B_{1/n}(q) : n ∈ N, q ∈ Q^d} is a base for the standard topology (see the proof of Thm. 1.9 later).

0.10 Definition. Let $I \neq \emptyset$ be an arbitrary index set. For every $\alpha \in I$ let $(X_{\alpha}, \mathcal{T}_{\alpha})$ be a topological space. Cartesian product space

$$\bigotimes_{\alpha \in I} X_{\alpha} := \left\{ f : J \to \bigcup_{\alpha \in I} X_{\alpha} \text{ with } f(\alpha) \in X_{\alpha} \right\}$$

has base of the product topology

$$\Big\{ \underset{\alpha \in I}{\times} A_{\alpha} : A_{\alpha} \in \mathcal{T}_{\alpha} \ \forall \alpha \in I, \ A_{\alpha} \neq X_{\alpha} \text{ for at most finitely many } \alpha's \Big\}.$$

0.11 Remark. If *I* is finite, then the condition " $A_{\alpha} \neq X_{\alpha}$ for at most finitely many α 's" is always fulfilled.

0.2 Metric spaces

0.12 Definition. $d: X \times X \longrightarrow [0, \infty]$ is a metric $:\iff$

- $d(x, y) \ge 0$ $\forall x, y \in X$ with $d(x, y) = 0 \iff x = y$.
- $d(x, y) = d(y, x) \quad \forall x, y \in X.$
- $d(x, y) \leq d(x, z) + d(z, y) \quad \forall x, y, z \in X.$

(X, d) is called a *metric space* (often just X)

0.13 Definition. Let *X* be a metric space.

- *Induced metric* on $Y \subseteq X$: $d|_{Y \times Y}$ (metric on Y).
- Open metric ball of radius $\varepsilon > 0$ about $x \in X$:

$$B_{\varepsilon}(x) := \{ y \in X : d(x, y) < \varepsilon \}.$$

- $A \subseteq X$ open : \iff for every $x \in A$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset A$.
- Cauchy sequence $(x_n)_{n \in \mathbb{N}} \subset X : \iff$

for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for every $n, m \ge N : d(x_n, x_m) < \varepsilon$.

- $(x_n)_{n \in \mathbb{N}} \subset X$ converges to $x \in X$: $\iff \lim_{n \to \infty} d(x_n, x) = 0$ $\iff \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \colon \forall n \ge n_0 \colon x_n \in B_{\varepsilon}(x).$
- X is complete : \iff every Cauchy sequence in X converges.

0.14 Remark. Completeness is not a topological notion! See Exercise.

0.15 Definition. Let $A \subseteq X, x \in X$.

- diam(A) := $\sup_{a,a' \in A} d(a,a')$ diameter of A.
- dist $(x, A) := \inf_{a \in A} d(x, a)$ distance of x to A.

0.16 Lemma. Let X be a complete metric space and $A \subseteq X$. Then: A closed \iff A complete.

Proof. See Analysis II.