Excercise Sheet 9 for 10.07. 2017
Consider the variational problem

$$
E:=\inf \left\{\frac{\|\nabla u\|_{2}\|u\|_{2}}{\|u\|_{4}^{2}}: u \in H^{1}\left(\mathbb{R}^{2}\right), u \neq 0\right\} .
$$

9.1. Recall the Sobolev's inequality

$$
\|\nabla \varphi\|_{1} \geq\|\varphi\|_{2}, \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right) .
$$

Use this to prove that $E>0$.
9.2. Show that we can choose a minimizing sequence $\left\{u_{n}\right\}$ for E such that

$$
\left\|\nabla u_{n}\right\|_{2}=\left\|u_{n}\right\|_{2}=1
$$

Prove that the sequence $\left\{u_{n}\right\}$ is not vanishing, namely there exist a subsequence (still denoted by $\left\{u_{n}\right\}$ for simplicity) and a sequence $\left\{x_{n}\right\} \subset \mathbb{R}^{2}$ such that $u_{n}\left(\cdot+x_{n}\right)$ converges weakly in $H^{1}\left(\mathbb{R}^{2}\right)$ to a function $u_{0} \not \equiv 0$.

9.3. Prove that

$$
\liminf _{n \rightarrow \infty}\left(\left\|\nabla u_{n}\right\|_{2}^{2}\left\|u_{n}\right\|_{2}^{2}-\left\|\nabla u_{0}\right\|_{2}^{2}\left\|u_{0}\right\|_{2}^{2}-\left\|\nabla\left(u_{n}-u_{0}\right)\right\|_{2}^{2}\left\|u_{n}-u_{0}\right\|_{2}^{2}\right) \geq 0
$$

and

$$
\lim _{n \rightarrow \infty}\left(\left\|u_{n}\right\|_{4}^{4}-\left\|u_{0}\right\|_{4}^{4}-\left\|u_{n}-u_{0}\right\|_{4}^{4}\right)=0
$$

Deduce that u_{0} is a minimizer for E.
9.4. Prove that there exists $Q \in H^{1}\left(\mathbb{R}^{2}\right), Q \geq 0$ such that

$$
-\Delta Q+Q-Q^{3}=0 \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)
$$

