Excercise Sheet 8 for 03.07. 2017

For $Z>0$ let

$$
\mathcal{E}(u):=\int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{3}} \frac{Z}{|x|}|u(x)|^{2} \mathrm{~d} x+\frac{1}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y
$$

be the Hartree functional and

$$
E(\lambda):=\inf \left\{\mathcal{E}(u): u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|_{2}^{2}=\lambda\right\} .
$$

8.1. Assume that u_{n} is a minimizing sequence for $E(\lambda)$, that u_{0} is a minimizer for $E(\lambda)$ and that $u_{n} \rightarrow u_{0}$ weakly in $H^{1}\left(\mathbb{R}^{3}\right)$. Prove that $u_{n} \rightarrow u_{0}$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$.
8.2. Prove that the inequality

$$
\mathcal{E}(u)+\mathcal{E}(v) \geqslant 2 \mathcal{E}\left(\sqrt{\frac{u^{2}+v^{2}}{2}}\right)
$$

holds for all non-negative $u, v \in H^{1}\left(\mathbb{R}^{3}\right)$ and that the inequality is strict unless $u=v$. Deduce that $E(\lambda)$ has at most one non-negative minimizer.
8.3. Prove that the function $\lambda \mapsto E(\lambda)$ is convex and that there exists $\lambda^{*} \in[Z, 2 Z]$ such that E is strictly decreasing on $\left[0, \lambda^{*}\right]$ and $E(\lambda)=E\left(\lambda^{*}\right)$ for all $\lambda \geqslant \lambda^{*}$.
8.4. Prove that $E(\lambda)$ has a minimizer if $\lambda \leqslant \lambda^{*}$ and has no minimizer if $\lambda>\lambda^{*}$.

