Mathematisches Institut der LMU Prof. P. T. Nam Dr. S. Morozov PDE II SoSe 2017 26.06.2017

Excercise Sheet 8 for 03.07.2017

For Z > 0 let

$$\mathcal{E}(u) := \int_{\mathbb{R}^3} \left| \nabla u(x) \right|^2 \mathrm{d}x - \int_{\mathbb{R}^3} \frac{Z}{|x|} |u(x)|^2 \,\mathrm{d}x + \frac{1}{2} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u(x)|^2 |u(y)|^2}{|x-y|} \,\mathrm{d}x \,\mathrm{d}y$$

be the Hartree functional and

$$E(\lambda) := \inf \left\{ \mathcal{E}(u) : \ u \in H^1(\mathbb{R}^3), \ \|u\|_2^2 = \lambda \right\}.$$

8.1. Assume that u_n is a minimizing sequence for $E(\lambda)$, that u_0 is a minimizer for $E(\lambda)$ and that $u_n \to u_0$ weakly in $H^1(\mathbb{R}^3)$. Prove that $u_n \to u_0$ strongly in $H^1(\mathbb{R}^3)$.

8.2. Prove that the inequality

$$\mathcal{E}(u) + \mathcal{E}(v) \ge 2\mathcal{E}\left(\sqrt{\frac{u^2 + v^2}{2}}\right)$$

holds for all non-negative $u, v \in H^1(\mathbb{R}^3)$ and that the inequality is strict unless u = v. Deduce that $E(\lambda)$ has at most one non-negative minimizer.

8.3. Prove that the function $\lambda \mapsto E(\lambda)$ is convex and that there exists $\lambda^* \in [Z, 2Z]$ such that E is strictly decreasing on $[0, \lambda^*]$ and $E(\lambda) = E(\lambda^*)$ for all $\lambda \ge \lambda^*$.

8.4. Prove that $E(\lambda)$ has a minimizer if $\lambda \leq \lambda^*$ and has no minimizer if $\lambda > \lambda^*$.