Excercise Sheet 5 for 12.06. 2017 (6 exercises for 2 weeks!)
Let $d \in \mathbb{N}$.
5.1. Let A be a measurable subset of \mathbb{R}^{d} with finite Lebesgue measure. Prove that for every sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converging weakly to f in $H^{1}\left(\mathbb{R}^{d}\right)$ the sequence $\left(1_{A} f_{n}\right)_{n \in \mathbb{N}}$ converges to $1_{A} f$ strongly in $L^{p}\left(\mathbb{R}^{d}\right)$ for all $p \in\left[2, p_{\max }\right)$,

$$
p_{\max }:= \begin{cases}2 d /(d-2), & \text { if } d \geqslant 3 \\ \infty, & \text { if } d \in\{1,2\}\end{cases}
$$

5.2. Prove that $H^{2}\left(\mathbb{R}^{3}\right)$ boundedly embeds into $C\left(\mathbb{R}^{3}\right)$. Note that the statements about the embeddings of $W^{k, p}\left(\mathbb{R}^{d}\right)$ were only proved in the class for $k=1$ and thus cannot be used in the solution for $k>1$.
5.3. Let $d \in\{1,2\}$ and $V \in L^{1}\left(\mathbb{R}^{d}\right)$ be real-valued with $\int_{\mathbb{R}^{d}} V(x) \mathrm{d} x<0$. Prove that

$$
E_{V}:=\inf \left\{\int_{\mathbb{R}^{d}}\left(|\nabla \varphi(x)|^{2}+V(x)|\varphi(x)|^{2}\right) \mathrm{d} x: \varphi \in H^{1}\left(\mathbb{R}^{d}\right),\|\varphi\|_{L^{2}}=1\right\}<0
$$

5.4. Prove that there exists $C_{d}>0$ such that every radial $f \in H^{1}\left(\mathbb{R}^{d}\right)$ (i.e. $f(x)=f(|x|)$ for a.e. $x \in \mathbb{R}^{d}$) satisfies

$$
|f(x)| \leqslant C_{d}|x|^{(1-d) / 2}\|f\|_{H^{1}} \quad \text { for a.e. } x \in \mathbb{R}^{d} \text { with }|x|>1 .
$$

5.5. Prove that if a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges weakly to f in $H^{1}\left(\mathbb{R}^{d}\right)$, then $\left(\left|f_{n}\right|\right)_{n \in \mathbb{N}}$ converges weakly to $|f|$ in $H^{1}\left(\mathbb{R}^{d}\right)$.
5.6. Find a constant $a>0$ such that $f(x):=|x|^{-a}$ solves the equation

$$
\left(-\Delta-\frac{1}{4|x|^{2}}\right) f(x)=0, \quad \text { for all } x \in \mathbb{R}^{3} \backslash\{0\}
$$

Use the Perron-Frobenius principle to conclude the Hardy inequality

$$
\int_{\mathbb{R}^{3}}|(\nabla u)(x)|^{2} \mathrm{~d} x \geqslant \frac{1}{4} \int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|^{2}} \mathrm{~d} x, \quad \text { for all } u \in H^{1}\left(\mathbb{R}^{3}\right) .
$$

