Mathematisches Institut der LMU Prof. P. T. Nam Dr. S. Morozov PDE II SoSe 2017 29.05.2017

Excercise Sheet 5 for 12.06.2017 (6 exercises for 2 weeks!)

Let $d \in \mathbb{N}$.

5.1. Let A be a measurable subset of \mathbb{R}^d with finite Lebesgue measure. Prove that for every sequence $(f_n)_{n\in\mathbb{N}}$ converging weakly to f in $H^1(\mathbb{R}^d)$ the sequence $(1_A f_n)_{n\in\mathbb{N}}$ converges to $1_A f$ strongly in $L^p(\mathbb{R}^d)$ for all $p \in [2, p_{\max})$,

$$p_{\max} := \begin{cases} 2d/(d-2), & \text{if } d \ge 3; \\ \infty, & \text{if } d \in \{1,2\}. \end{cases}$$

5.2. Prove that $H^2(\mathbb{R}^3)$ boundedly embeds into $C(\mathbb{R}^3)$. Note that the statements about the embeddings of $W^{k,p}(\mathbb{R}^d)$ were only proved in the class for k = 1 and thus cannot be used in the solution for k > 1.

5.3. Let $d \in \{1,2\}$ and $V \in L^1(\mathbb{R}^d)$ be real-valued with $\int_{\mathbb{R}^d} V(x) \, dx < 0$. Prove that

$$E_V := \inf\left\{\int_{\mathbb{R}^d} \left(\left|\nabla\varphi(x)\right|^2 + V(x)\left|\varphi(x)\right|^2\right) \mathrm{d}x : \varphi \in H^1(\mathbb{R}^d), \|\varphi\|_{L^2} = 1\right\} < 0.$$

5.4. Prove that there exists $C_d > 0$ such that every radial $f \in H^1(\mathbb{R}^d)$ (i.e. f(x) = f(|x|) for a.e. $x \in \mathbb{R}^d$) satisfies

 $|f(x)| \leq C_d |x|^{(1-d)/2} ||f||_{H^1}$ for a.e. $x \in \mathbb{R}^d$ with |x| > 1.

5.5. Prove that if a sequence $(f_n)_{n \in \mathbb{N}}$ converges weakly to f in $H^1(\mathbb{R}^d)$, then $(|f_n|)_{n \in \mathbb{N}}$ converges weakly to |f| in $H^1(\mathbb{R}^d)$.

5.6. Find a constant a > 0 such that $f(x) := |x|^{-a}$ solves the equation

$$\left(-\Delta - \frac{1}{4|x|^2}\right)f(x) = 0, \text{ for all } x \in \mathbb{R}^3 \setminus \{0\}.$$

Use the Perron-Frobenius principle to conclude the Hardy inequality

$$\int_{\mathbb{R}^3} \left| (\nabla u)(x) \right|^2 \mathrm{d}x \ge \frac{1}{4} \int_{\mathbb{R}^3} \frac{|u(x)|^2}{|x|^2} \mathrm{d}x, \quad \text{for all } u \in H^1(\mathbb{R}^3).$$