Excercise Sheet 4 for 29.05. 2017
Let $d \in \mathbb{N}$.
4.1. For real-valued functions $f, g \in H^{1}\left(\mathbb{R}^{d}\right)$ prove that in the distributional sense $\nabla \max \{f, g\}=h$, with

$$
h(x):= \begin{cases}(\nabla f)(x), & \text { for } f(x) \geqslant g(x) ; \\ (\nabla g)(x), & \text { for } f(x)<g(x) .\end{cases}
$$

4.2. Given $u_{0} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ and $z \in \mathbb{R}^{d} \backslash\{0\}$, for $n \in \mathbb{N}$ let $u_{n}(x):=u_{0}(x-n z)$ for all $x \in \mathbb{R}^{d}$. Prove that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $H^{1}\left(\mathbb{R}^{d}\right)$, but for any $p \in[1, \infty]$ it does not possess a subsequence convergent in $L^{p}\left(\mathbb{R}^{d}\right)$.
4.3. Let $V: \mathbb{R}^{d} \rightarrow[0, \infty)$ be a measurable function satisfying $\inf _{|x| \geqslant R} V(x) \underset{R \rightarrow \infty}{\longrightarrow} \infty$. Suppose that a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions from $H^{1}\left(\mathbb{R}^{d}\right)$ converges to $f \in H^{1}\left(\mathbb{R}^{d}\right)$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$ and that $\sup _{n \in \mathbb{N}} \int_{\mathbb{R}^{d}} V(x)\left|f_{n}(x)\right|^{2} \mathrm{~d} x<\infty$. Prove that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f strongly in $L^{2}\left(\mathbb{R}^{d}\right)$.
4.4. For $j \in \mathbb{N}$ let $\Sigma^{(j)}:=\left\{\left(a_{k}^{(j)}, b_{k}^{(j)}\right), k=1, \ldots, 2^{j}\right\}$ be the collection of 2^{j} disjoint open intervals defined recursively by $\Sigma^{(1)}:=\{(0,1),(2,3)\}$,

$$
\Sigma^{(j+1)}:=\left\{\left(a_{k}^{(j)}, \frac{2 a_{k}^{(j)}}{3}+\frac{b_{k}^{(j)}}{3}\right), k=1, \ldots, 2^{j}\right\} \cup\left\{\left(\frac{a_{k}^{(j)}}{3}+\frac{2 b_{k}^{(j)}}{3}, b_{k}^{(j)}\right), k=1, \ldots, 2^{j}\right\},
$$

i.e. the passage from $\Sigma^{(j)}$ to $\Sigma^{(j+1)}$ consists in removing of 2^{j} disjoint closed intervals

$$
I_{k}^{(j+1)}:=\left[\frac{2 a_{k}^{(j)}}{3}+\frac{b_{k}^{(j)}}{3}, \frac{a_{k}^{(j)}}{3}+\frac{2 b_{k}^{(j)}}{3}\right], k=1, \ldots, 2^{j} .
$$

Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x):= \begin{cases}0, & \text { for } x \in \mathbb{R} \backslash(0,3) ; \\ 1, & \text { for } x \in[1,2] ; \\ \frac{f\left(a_{k}^{(j)}\right)+f\left(b_{k}^{(j)}\right)}{2}, & \text { for } x \in I_{k}^{(j+1)}, k=1, \ldots, 2^{j}, j \in \mathbb{N}\end{cases}
$$

is well-defined. Determine whether f is continuous on \mathbb{R} and whether $f \in H^{1}(\mathbb{R})$.

