Mathematisches Institut der LMU Prof. P. T. Nam Dr. S. Morozov

Excercise Sheet 10 for 17.07.2017

10.1. Assume that $u_n \to u$ weakly in $H^1(\mathbb{R}^d)$. Prove that there exist a subsequence u_{n_k} and a sequence $R_k \to +\infty$ such that $u_{n_k} \mathbb{1}_{B(0,R_k)} \to u$ strongly in $L^2(\mathbb{R}^d)$. Here $\mathbb{1}_{B(0,R)}$ is the characteristic function of the ball B(0,R).

10.2. Let $0 \leq f_n \in L^1(\mathbb{R}^3) \cap L^{5/3}(\mathbb{R}^3)$ such that $||f_n||_1 + ||f_n||_{5/3} \leq C$ and $f_n \to f_0$ weakly in $L^{5/3}(\mathbb{R}^3)$ as $n \to \infty$. Prove that

$$\liminf_{n \to \infty} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{f_n(x) f_n(y)}{|x - y|} \, \mathrm{d}x \, \mathrm{d}y \ge \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{f_0(x) f_0(y)}{|x - y|} \, \mathrm{d}x \, \mathrm{d}y.$$

10.3. Let $0 \leq \rho \in L^1(\mathbb{R}^3) \cap L^{5/3}(\mathbb{R}^3)$ be a radial solution to the Thomas-Fermi equation

$$\frac{5}{3}\rho^{2/3} = \left[\frac{Z}{|x|} - \rho * |x|^{-1} + \mu\right]_+$$

for some constants $Z > 0 \ge \mu$. Prove that $\mu < 0$ if $\int \rho < Z$ and $\mu = 0$ if $\int \rho = Z$.

10.4. Let Ω be an open, bounded set in \mathbb{R}^d . Let $\{u_n\}$ be a bounded sequence in $L^p(\Omega)$ for some p > 1. Prove that if $u_n(x) \to u(x)$ for a.e. $x \in \Omega$, then $u_n \to u$ strongly in $L^q(\Omega)$ for all $1 \leq q < p$.