Mathematical Quantum Mechanics

Homework Sheet 9

Exercise 1: Let ξ be the Slater determinant of N orthonormal orbitals $\xi_1, \ldots, \xi_N \in L^2(\mathbb{R}^3) \otimes \mathbb{C}^q$. Compute its one-particle reduced density $\rho_{\xi}^{(1)}$ and density matrix $\gamma_{\xi}^{(1)}$. Express the two-particle reduced density and density matrix of ξ through $\rho_{\xi}^{(1)}$ and $\gamma_{\xi}^{(1)}$.

Exercise 2: Consider the atomic Hartree–Fock functional on

$$D := \Big\{ \gamma \in \mathfrak{S}^1 \big(L^2(\mathbb{R}^3) \otimes \mathbb{C}^4 \big) : 0 \leqslant \gamma \leqslant 1, \quad T_\gamma < \infty \Big\}.$$

- 1. Prove that if γ is a minimizer of \mathcal{E}_{HF} over $D_N := \{\gamma \in D : \text{tr } \gamma = N\}$ with $N \in \mathbb{R}_+$ then $\gamma = P + |\xi\rangle\langle\xi|$, where P is an orthogonal projector with tr P = [N], and $\xi \in \mathfrak{H}$ satisfies $P\xi = 0$ and $\|\xi\|^2 = N - [N]$. Here $[N] := \max\{M \in \mathbb{N}_0 : M \leq N\}$ is the integer part of N.
- 2. Prove that the charge is quantized in the Hartree–Fock theory: If there exists a minimizer of \mathcal{E}_{HF} in D then there exists a minimizer with an integer trace.

Exercise 3:

1. For $\gamma \in D$ let the Hartree–Fock two–particle density be

$$\rho_{HF}^{(2)}(\mathfrak{x},\mathfrak{y}) := \frac{1}{2} \sum_{\sigma,\tau=1}^{q} \left(\gamma(x,x)\gamma(y,y) - \gamma(x,y)\gamma(y,x) \right).$$

Prove that

$$\iint_{\mathbb{R}^6} \rho_{\gamma,HF}^{(2)}(\mathfrak{x},\mathfrak{y}) \mathrm{d}\mathfrak{x} \mathrm{d}\mathfrak{y} \geqslant \binom{N}{2}$$

with the strict inequality unless γ is a projector.

2. For $\gamma \in D$ let the Müller two-particle density be

$$\rho_M^{(2)}(\mathfrak{x},\mathfrak{y}) := \frac{1}{2} \sum_{\sigma,\tau=1}^q \left(\gamma(x,x)\gamma(y,y) - \gamma^{1/2}(x,y)\gamma^{1/2}(y,x) \right).$$

Prove that

$$\iint_{\mathbb{R}^6} \rho_{\gamma,M}^{(2)}(\mathfrak{x},\mathfrak{y}) \mathrm{d}\mathfrak{x} \mathrm{d}\mathfrak{y} = \binom{N}{2}.$$

The solutions should be put to the box marked "Mathematical Quantum Mechanics" on the first floor by 12:00 on Thursday, Dezember 19.

Every solution must be an original work of its single author! Violations of this rule will be penalized!