Mathematical Quantum Mechanics

Homework Sheet 6

Exercise 1: Let $\{e_j\}_{j\in\mathbb{N}}$ be an orthonormal basis in $\mathfrak{H} := L^2(\mathbb{R}^3)$ consisting of functions from $C_0^2(\mathbb{R}^3)$. In the fermionic Fock space $\mathfrak{F}(\mathfrak{H})$ with the vacuum vector Ω consider the operator

$$H_{0} := \sum_{j,k \in \mathbb{N}} \left(e_{j}, \left(-\Delta - Z/|x| \right) e_{k} \right) a^{*}(e_{j}) a(e_{k}) \\ + \frac{1}{2} \sum_{j,k,l,m \in \mathbb{N}} \left(e_{j} \otimes e_{k}, |x-y|^{-1}(e_{l} \otimes e_{m}) \right) a^{*}(e_{j}) a^{*}(e_{k}) a(e_{m}) a(e_{l})$$

with

$$D(H_0) := \text{Span} \left\{ a^*(e_{j_1}) a^*(e_{j_2}) \dots a^*(e_{j_K}) \Omega : 1 \leq j_1 < j_2 < \dots < j_K, K \in \mathbb{N}_0 \right\}.$$

- 1. Show that H_0 is a densely defined symmetric operator in $\mathfrak{F}(\mathfrak{H})$.
- 2. Prove that there exists a self-adjoint extension H of H_0 with a form domain contained in the form domain of the particle number operator $N = \sum_{j \in \mathbb{N}} a^*(e_j) a(e_j).$ *Hint:* Find a constant C such that $H_0 + CN$ is bounded below.
- 3. Show that for every $K \in \mathbb{N}_0$ the subspace \mathfrak{H}_K (i.e., the *K*-particle sector of $\mathfrak{F}(\mathfrak{H})$) is invariant for *H*. Describe the action of *H* in this subspace not using creation/annihilation operators.
- 4. Conclude that H does not depend on the choice of the basis $\{e_j\}_{j\in\mathbb{N}}$.

Exercise 2: For a system of K identical fermions with spin 1/2 (in particular, electrons) the natural Hilbert space is $\wedge^K \mathfrak{H}$ with $\mathfrak{H} = L^2(\mathbb{R}^3, \mathbb{C}^2)$. Show that the ground state energy of the atomic Hamiltonian

$$H = \sum_{j=1}^{K} \left(-\Delta_j - \frac{Z}{|x_j|} \right) + \sum_{\substack{j,k=1\\j < k}}^{K} \frac{1}{|x_j - x_k|}$$

is bounded below by

$$-\frac{Z^2}{2}(M-1) - \frac{Z^2}{4M^2} \Big(K - \sum_{n=1}^{M-1} 2n^2 \Big), \text{ where } M := \min \Big\{ N \in \mathbb{N} : \sum_{n=1}^N 2n^2 \ge K \Big\}.$$

Continues on the next page!

You may use the spectral decomposition of the one particle Hamiltonian $-\Delta - Z/|x|$ without proof.

Exercise 3: Determine the essential spectrum of $-\Delta - (1 + |x|^2)^{-1/4}$. *Hint:* You may use Seiler-Simon inequality.

The solutions should be put to the box marked "Mathematical Quantum Mechanics" on the first floor by 16:00 on Tuesday, November 26.

Every solution must be an original work of its single author! Violations of this rule will be penalized!