Mathematical Quantum Mechanics

Homework Sheet 5

Let \mathfrak{G} , \mathfrak{H} be Hilbert spaces.

Exercise 1: In \mathfrak{H}^N (i.e., the *N*-fold tensor product of \mathfrak{H} with itself) we consider the natural action of the symmetric group σ_N . Namely, for every permutation $\pi \in \sigma_N$ we define a linear map U_{π} on pure tensor products:

$$U_{\pi}(u_1 \otimes \cdots \otimes u_N) := u_{\pi(1)} \otimes \cdots \otimes u_{\pi(N)}.$$
(1)

- 1. Prove that (1) uniquely defines a unitary operator $U_{\pi} : \mathfrak{H}^N \to \mathfrak{H}^N$.
- 2. Prove that the two operators

$$P_{+} := \frac{1}{N!} \sum_{\pi \in \sigma_{N}} U_{\pi}, \qquad P_{-} := \frac{1}{N!} \sum_{\pi \in \sigma_{N}} (\operatorname{sgn} \pi) U_{\pi}$$

are orthogonal projections $(P_{\pm} = P_{\pm}^*, P_{\pm}^2 = P_{\pm})$ satisfying $P_-P_+ = 0$ if $N \ge 2$.

Exercise 2 (Reduced density matrix): For a normalized pure state $\psi \in \mathfrak{H} \otimes \mathfrak{G}$ find a trace-class operator $\gamma_{\psi} : \mathfrak{H} \to \mathfrak{H}$ such that for every bounded operator A in \mathfrak{H}

$$(\psi, (A \otimes \mathbb{1}_{\mathfrak{G}})\psi) = \operatorname{tr}(\gamma_{\psi}A).$$

Prove that γ_{ψ} satisfies $0 \leq \gamma_{\psi} \leq \mathbb{1}_{\mathfrak{H}}$ and that tr $\gamma_{\psi} = 1$. *Hint:* A pure state is not necessarily a pure tensor product!

Exercise 3:

- 1. Let $f \in \mathfrak{H}$. Starting from their action on pure tensor products, define the operators $a_{\pm}(f)$ and $a_{\pm}^*(f)$ densely in the Fock spaces $\mathcal{F}_{\pm}(\mathfrak{H})$.
- 2. Show that on their domains these operators satisfy

$$\left(a_{\pm}(f)\Psi,\Phi\right)_{\mathcal{F}_{\pm}}=\left(\Psi,a_{\pm}^{*}(f)\Phi\right)_{\mathcal{F}_{\pm}}$$

3. Prove that for $f \neq 0$ the operators $a_{-}(f)$, $a_{-}^{*}(f)$ are bounded, whereas $a_{+}(f)$, $a_{+}^{*}(f)$ are unbounded.

The solutions should be put to the box marked "Mathematical Quantum Mechanics" on the first floor by 16:00 on Tuesday, November 19.

Every solution must be an original work of its single author! Violations of this rule will be penalized!