Prof. H. Siedentop

Mathematical Quantum Mechanics

Homework Sheet 3

Exercise 1 (2 points): Assume that the Born-Jordan commutation relation

$$
[p, q]=-\mathrm{i} \hbar
$$

is satisfied by bounded operators p and q. Conclude that the Planck constant must be zero, i.e., there is no quantum mechanics.

Exercise 2: In this exercise on simple examples we explore why defining an observable on a natural dense set is not sufficient (contrary to a common belief!) and how much the properties of an operator depend on its domain.

In the Hilbert space $L^{2}((-1,1))$ let the operator A_{0} be defined on $D\left(A_{0}\right):=C_{0}^{\infty}((-1,1))$ by the formula

$$
\left(A_{0} u\right)(t):=-\mathrm{i} \frac{\mathrm{~d} u(t)}{\mathrm{d} t}
$$

1. Show that A_{0} is symmetric, but not selfadjoint. Find all selfadjoint extensions of A_{0}, i.e., such operators $A=A^{*}$ that $D\left(A_{0}\right) \subset D(A)$ and $A u=A_{0} u$ for all $u \in D\left(A_{0}\right)$.
Hint: The crucial observation is that every symmetric extension A of A_{0} must satisfy $D\left(A_{0}\right) \subset D(A) \subseteq D\left(A^{*}\right) \subset D\left(A_{0}^{*}\right)$ and $A=\left.A_{0}^{*}\right|_{D(A)}$.
2. Determine the spectra of these extensions.
3. Find a (non-selfadjoint!) extension of A_{0} whose spectrum is empty.
4. Replace the interval $(-1,1)$ by $(0, \infty)$ and find the selfadjoint extensions of A_{0} in this case.

Exercise 3: For $\phi \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ consider

$$
\begin{equation*}
E_{Z}[\phi]:=\int_{\mathbb{R}^{3}} \sqrt{|\xi|^{2}+1}|\phi(\xi)|^{2} \mathrm{~d} \xi-\frac{\alpha Z}{2 \pi^{2}} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\overline{\phi(\xi)} \phi(\eta)}{|\xi-\eta|^{2}} \mathrm{~d} \eta \mathrm{~d} \xi \tag{1}
\end{equation*}
$$

1. Find the biggest value Z_{c} of Z, for which $E_{Z}[\phi]$ is nonnegative.

Hint: Reduce the problem to the one with $\sqrt{|\xi|^{2}+1}$ replaced by $|\xi|$. This can be solved by using the ground state transform with the ground state function $|\xi|^{-2}$.
2. For every function $f \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ calculate the ratio

$$
A:=\left(\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\overline{\hat{f}(\xi)} \hat{f}(\eta)}{|\xi-\eta|^{2}} \mathrm{~d} \xi \mathrm{~d} \eta\right) /\left(\int_{\mathbb{R}^{3}} \frac{|f(x)|^{2}}{|x|} \mathrm{d} x\right)
$$

3. Calculate the quadratic form q_{C} of $C=\sqrt{-\Delta+1}-\alpha Z /|x|$ in terms of E_{Z}.
4. Assuming $Z \leq Z_{c}$, determine whether there is a unique selfadjoint operator C with $D(C) \supset \mathcal{S}\left(\mathbb{R}^{3}\right)$ such that its quadratic form is given by q_{C}.

The solutions should be put to the box marked "Mathematical Quantum Mechanics" on the first floor by 16:00 on Tuesday, November 5.

Every solution must be an original work of its single author! Violations of this rule will be penalized!

