Mathematisches Institut
LMU MÜnchen
WS 2013-14

Prof. H. Siedentop
Dr. R. Helling
Dr. S. Morozov

Mathematical Quantum Mechanics

Homework Sheet 2

Exercise 1: Let $d \geqslant 3$.

1. Use ground state transform to show that

$$
\int_{\mathbb{R}^{d}}|\nabla \phi(x)|^{2} \mathrm{~d} x-\left(\frac{d-2}{2}\right)^{2} \int_{\mathbb{R}^{d}} \frac{|\phi(x)|^{2}}{|x|^{2}} \mathrm{~d} x \geqslant 0 \quad \text { for all } \phi \in C_{0}^{1}\left(\mathbb{R}^{d}\right) .
$$

This result is widely known as Hardy inequality, or the uncertainty principle.
2. For which values of $C \in \mathbb{R}$ is the quadratic form of the operator $-\Delta-C / \|\left.\cdot\right|^{2}$ defined on $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ bounded below?
3. For $d=3$ use ground state transform to show that

$$
\left(\phi,\left(|x| p^{2}+p^{2}|x|\right) \phi\right) \geqslant 0 \quad \text { for every } \phi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)
$$

Here, as usual, $p=-\mathrm{i} \nabla$ is the momentum operator.

Exercise 2:

1. From the Sobolev inequality

$$
\left(\int_{\mathbb{R}^{d}}|\phi(x)|^{\frac{2 d}{d-2}} \mathrm{~d} x\right)^{\frac{d-2}{d}} \leqslant C_{d} \int_{\mathbb{R}^{d}}|\nabla \phi(x)|^{2} \mathrm{~d} x \quad \forall \phi \in C_{0}^{1}\left(\mathbb{R}^{d}\right)
$$

deduce a lower bound for Schrödinger operators, i.e., find a constant $B_{d} \in \mathbb{R}$ such that for all $V \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ with $V_{-}:=\max \{-V, 0\} \in L^{\frac{2+d}{2}}\left(\mathbb{R}^{d}\right)$ the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|\nabla \phi(x)|^{2} \mathrm{~d} x+\int_{\mathbb{R}^{d}} V(x)|\phi(x)|^{2} \mathrm{~d} x \geqslant B_{d} \int_{\mathbb{R}^{d}} V_{-}^{\frac{d+2}{2}}(x) \mathrm{d} x \int_{\mathbb{R}^{d}}|\phi(x)|^{2} \mathrm{~d} x \tag{1}
\end{equation*}
$$

holds for every $\phi \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$.
2. For the case of a Hydrogen-like atom $(V(x)=-Z /|x|)$ deduce a lower bound for the quantum energy.
3. As another application of the Sobolev inequality, prove that for $d \geqslant 3$ inequality (1) holds with $B_{d}=0$ if $\int_{\mathbb{R}^{d}} V_{-}^{d / 2}(x) \mathrm{d} x$ is small enough.

The solutions should be put to the box marked "Mathematical Quantum Mechanics" on the first floor by 16:00 on Tuesday, October 29.

Every solution must be an original work of its single author! Violations of this rule will be penalized!

