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Exercise 1:

1. Let V be a central potential given by a real–valued function V (r).
Prove that if V (r) has an analytic continuation V (z) to a sector{
z : | arg z| < α

}
with

lim
|z|→∞
| arg z|<β

V (z) = 0

and

sup
0<|φ|<β

∫∫
|x|,|x′|61

∣∣∣V (eiϕ|x|)∣∣∣∣∣∣V (eiϕ|x′|)∣∣∣|x− x′|−2 dx dx′ <∞

for each β < α, then V is dilation analytic.

2. Prove that the Coulomb potential V (r) = r−1 is in F∞ and the Yukawa
potential V (r) = e−µr/r, µ > 0, is in Fπ/2.

Exercise 2: Let (r, θ, φ) be the spherical coordinates of x ∈ R3. Prove
that the resonances E ∈ C of the Schrödinger operator with a delta–shell
potential of radius a > 0

H = −∆− cδ(r − a) in L2(R3)

satisfy the equation
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for some l ∈ N0. Here Il+ 1
2
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2

are the modified Bessel functions.
Hint: Use that the Green function of the Helmholtz equation can be repre-
sented as
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=
1√
rr′
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l=0

l∑
m=−l
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where Ylm are the spherical harmonics.

The solutions should be put to the box marked “Mathematical Quantum
Mechanics” on the first floor by 16:00 on Tuesday, January 28.


