Mathematical Quantum Mechanics

Homework Sheet 12

Exercise 1: Let $f : \mathbb{R} \to \mathbb{C}$ be a continuous function. For a self-adjoint operator A using the spectral theorem we define the operator f(A).

- 1. Prove that $\sigma(f(A)) = \overline{f(\sigma(A))}$.
- 2. Characterize the essential spectrum of f(A) in terms of f and the spectral measure of A.

Exercise 2: Suppose that V is relatively $-\Delta$ -compact and E is an isolated eigenvalue of $-\Delta + \lambda_0 V$ for some $\lambda_0 \in \mathbb{R}$. For $0 < \varepsilon < \text{dist}(E, \sigma(-\Delta + \lambda_0 V) \setminus \{E\})$ let

$$P_{\lambda} := \frac{1}{2\pi i} \oint_{|z-E|=\varepsilon} (z + \Delta - \lambda V)^{-1} dz.$$

- 1. Prove that P_{λ_0} is the projection onto the eigenspace of $-\Delta + \lambda_0 V$ to the eigenvalue E.
- 2. Prove that P_{λ} depends analytically on λ in a neighborhood of λ_0 .

The solutions should be put to the box marked "Mathematical Quantum Mechanics" on the first floor by 16:00 on Tuesday, January 21.