Mathematical Quantum Mechanics

Homework Sheet 10

Exercise 1: Let $\rho_0 \ge 0$ be a radially symmetric function from $L^1(\mathbb{R}^3)$ with $\int_{\mathbb{R}^3} \rho_0(x) dx = 1$. For $y \in \mathbb{R}^3$ let $\rho_y(x) := \rho_0(x-y)$. Prove that $2D(\rho_y, \rho_{y'}) \le |y-y'|^{-1}$.

Exercise 2: Let the Hartree–Fock two–particle density $\rho_{HF}^{(2)}$ and the Müller two–particle density $\rho_{M}^{(2)}$ be as defined in Exrecise 3 of Homework Sheet 9.

- 1. Determine, whether $\rho_{HF}^{(2)}$ is non–negative.
- 2. Determine, whether $\rho_M^{(2)}$ is non–negative.
- 3. Show that on D_N (see Exercise 2.1 of Homework Sheet 9) the minimal energy of the atomic Hartree–Fock functional is greater than the one of the Müller functional.

Exercise 3:

1. For $\varphi \in L^{5/2}(\mathbb{R}^3)$ with $\varphi \ge 0$ compute

$$\left(\iint \left(p^2 - \varphi(q) \right)_{-} \mathrm{d}p \, \mathrm{d}q \right) \Big/ \int \varphi^{5/2}(x) \mathrm{d}x.$$

2. In $L^2(\mathbb{R}^3)$ consider the operator $H = -\hbar^2 \Delta - \varphi(x)$ with $\varphi \in L^{5/2}(\mathbb{R}^3)$, $\varphi \ge 0$. Prove that the trace of the negative part of H satisfies

$$\operatorname{tr} H_{-} = h^{-3} \iint \left(p^{2} - \varphi(q) \right)_{-} \mathrm{d}p \,\mathrm{d}q + o(h^{-3}).$$

- 3. Prove the equivalence of the two statements:
 - (a) There exists C > 0 such that for every $N \in \mathbb{N}$ and every $\psi \in \wedge^N C_0^{\infty}(\mathbb{R}^3)$ the inequality $T_{\psi} \ge C \int \rho_{\psi}^{5/3}$ holds.
 - (b) There exists c > 0 such that for every $\varphi \in C_0^{\infty}(\mathbb{R}^3)$ with $\varphi \ge 0$ the inequality $-\operatorname{tr}(-\Delta \varphi)_- \leq c \int \varphi^{5/2}$ holds.

The solutions should be put to the box marked "Mathematical Quantum Mechanics" on the first floor by 16:00 on Tuesday, January 7.

Merry Christmas and Happy New Year!