## Advanced Mathematical <br> SS 2013

## Excercises for the session on July 1

Exercise 1: In the proof of Lemma 9.6 (bosonic case): Let $V:=\operatorname{span}\left\{v_{1}, \tilde{v}_{1}\right\}$ and $X$ as in the lecture notes. Prove that $\mathfrak{H} \oplus \mathfrak{H}^{*}=V \dot{+} X$ (direct sum).

Exercise 2: Provide (some of) the missing details in the proof of Theorem 9.9. For example:

- In the fermionic case:

1. Prove that $\frac{1}{4}-\mathcal{A}_{-}^{2}$ is trace class.
2. Prove (74) and that $0 \leqslant \lambda_{i} \leqslant 1 / 2$.
3. Prove that $U^{*} \gamma U, V^{*} J \gamma J^{*} V$ and $U^{*} U \alpha \alpha^{*}$ are trace class.
4. Prove that $\mathcal{A}_{+}-1 / 2$ is Hilbert-Schmidt.

- In the bosonic case:

1. Is $C^{2}-1 / 4$ a Hilbert-Schmidt or trace class operator?
2. Verify that $C$ has an orthonormal eigenbasis.
3. Prove that $\Gamma_{\Psi} \mathcal{S}\left(\Gamma_{\Psi}+\mathcal{S}\right)$ has finite trace.
4. Prove that the upper left entry of the matrix for $\mathcal{V}^{*} \Gamma \mathcal{V}$ is trace class.
5. Verify that $\mathcal{V}$ admits a unitary representation.
