Homework 8

For Thursday, 23 June 2016

- **8.1.** Let H be self-adjoint. Prove that:
 - (a) If $V(H-z)^{-p} \in \mathcal{T}^{\infty}$ for some $z \in res(H)$ and p > 0, then $V1_I(H) \in \mathcal{T}^{\infty}$ for any bounded interval $I \subset \mathbb{R}$.
 - (b) If V is bounded and $V1_I(H) \in \mathcal{T}^{\infty}$ for any bounded interval $I \subset \mathbb{R}$, then $V(H-z)^{-p} \in \mathcal{T}^{\infty}$ for every $z \in \text{res}(H)$ and p > 1.
 - (c) If V is relatively bounded w.r.t. H with the relative bound zero and $V1_I(H) \in \mathcal{T}^{\infty}$ for any bounded interval $I \subset \mathbb{R}$, then $V(H-z)^{-1} \in \mathcal{T}^{\infty}$ for every $z \in \text{res}(H)$.
 - (d) $V(H-z)^{-1} \in \mathcal{T}^{\infty}$ holds for every $z \in \text{res}(H)$ if and only if V is relatively bounded w.r.t. H with the relative bound zero and $V(H-z)^{-p} \in \mathcal{T}^{\infty}$ for some p > 0.
- **8.2.** (a) Let H be self-adjoint in \mathcal{H} and $z \in \text{res}(H)$. Prove that $\lambda \in \sigma_{\text{ess}}(H)$ if and only if there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in \mathcal{H} with

$$x_n \xrightarrow[n \to \infty]{w} 0$$
, $x_n \xrightarrow[n \to \infty]{} 0$, and $((H-z)^{-1} - (\lambda - z)^{-1})x_n \xrightarrow[n \to \infty]{} 0$.

(b) Let H_0 , H be self-adjoint, $z \in \text{res}(H_0) \cap \text{res}(H)$, and $(H_0 - z)^{-1} - (H - z)^{-1} \in \mathcal{T}^{\infty}$. Prove that $\sigma_{\text{ess}}(H) = \sigma_{\text{ess}}(H_0)$ holds.